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4.SPARX achieves a TSS of 0.418 and HSS of 0.414 at F,
during the ISWA validation period. These results indicate
that SPARX retains predictive capability when applied to

Figure 2: Schematic diagram of SPARX’s modelling
framework (1)

Flux profiles are gathered into a pre- (a) Fio Threshold (b) F; Threshold

generated database, SPARX queries the
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. SPARX forecasting system is extensible and e Figure 5 (a) and (b) showcase SPARX simulation overlaid V=L e (fa R e ab?\sl\e/\)/:?;gféiggs?og operational data from
can be modified to produce output from on SEPEM observation (historical GOES data) for the
different injection spectra, particle species, events on 2001-03-29 and 2012-03-07 respectively. o Further statistics explaining SPARX’s forecast accuracy varying
output flux profile energy ranges and flux o Figure 5 (a) evidences SPARX’s better performance for with flare longtitude (Figure 5 (c) and (d)) are showcased through
profiles at any point in the heliosphere. western longitude events compared with the case (Figure the spread observed in flare longitude binning and peak flux
. The SPARX model includes some description 5 (b)) where it is an eastern event. comparisons between SEPEM vs SPARX.
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of perpendicular transport via particle drift.
. Event: 2001-03-29 10:15 UTC Window: -12h / +132h Event: 2012-03-07 01:14 UTC Window: -12h / +132h
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5 Forthcoming Developments
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Figure 6: Conceptual illustration
(6) of ROC curve showing classifier
performance.

for operational use. Figure 5: (a) SPARX (orange) vs SEPEM (blue) plot for the SEP event on 2001-03-29, flare location = N20W19, flare class = X1.7

(b) Same as (a) but for the event 2012-03-07, flare location = N17E27, flare class = X1.3 (c) Forecast outcomes by flare longitude bin for SPARX.
Bars show number of events in each 30° bin classified as hit, miss etc. (d) SPARX peak flux forecast performance vs SEPEM observations
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Conclusion

Evaluation through contingency-based metrics confirms that SPARX has better performance at lower thresholds, particularly for well-
connected events. Notably, SPARX retains predictive capability post-2017, as demonstrated through ISWA-derived SEP events. Our future
work aims to contribute to bridging the gap between 3D physics-based SEP modeling and real-time forecasting, ultimately advancing our
capability to assess and mitigate SEP-driven space weather hazards. Future enhancement consists of incorporating cross-field transport of
SEPs and evaluating its impact on SPARX’s forecasting accuracy, particularly for eastern SEP events which are currently poorly forecasted.
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