Updates on the Developments of Compact Cherenkov Proton Detectors

Fan Lei, Joey O'Neill, Chris Davis, Clive Dyer, Keith Ryden

Surrey Space Centre, University of Surrey, Guildford, Surrey GU2 7HX, UK

Introduction

The Cosmic Ray and Trapped Proton Environment

- Galactic CR: up to TeV and beyond,
- Solar CR/SEP: up to ~10s GeV
- Trapped protons: ~ 100s of MeV.
- Past experiments are either focused on the low energy (<100 MeV, e.g., GOES,VAP) or very high energies (> GeVs, e.g., AMS-02)
- There is a noticeable gap with experiments dedicated to the measurements of energetic SEPs/GLEs

Novel Cherenkov Proton Detector and Telescope

HEPI - High Energy Proton Instrument

Pair of compact Cherenkov detectors

Operated individually and in coincidence

- > 300 MeV Solar energetic protons
- Geomagnetic shielding as a means for spectroscopy
- ☐ Targeting CubeSats in a LEO constellation deployment
- HEPTEL High Energy Proton Telescopes
- Multiple radiators
- Telescope configurations
- SpectroscopyDirectionality
- ☐ For operational or scientific missions

HEPI Detector Implementation [1]

Base unit:

- 10x10x10 mm radiator
- □ SiO₂/PbF₂ /MgF₂
- SiPM optical readout
 - □ Broadcom NUV-MT 6x6 mm
- Shielding/Housing
- □ 2mm Al + 0.5 Ta

HEPI baseline:

- 2 baseline units
- Individually and in coincidence

101 - 100 - 101 - 100 - 101 - 100

Performance Simulations [3]

- Baseline design, 20 pho. Threshold
- Pulse height spectra and counting rate

. LEO (worst case 450km polar orbit)

GCR p; SEPs(GLE5, GLE21), Trapped p, e Act as source of signal or background

Beam Test Results [2]

A: Examples of the test run spectra:

 $E_{beam} = 230-355 \text{ MeV}$) radiators, gated on coincident signals. i) Spectra from the forwards facing SiPM 1, ii) spectra from the backwards facing

SiPM 2. c) Normalised Cherenkov spectra of a PbF₂ radiator ($E_{beam} = 355-480 \text{ MeV}$). Data processed via satellite-based SPB.

480 and 355 MeV proton beam at the TRIUMF PIF

Summary & Outlook

Main Achievements:

- Established the key requirements
- Completed the breadboard implementation
- GRAS/Geant4 based simulator for in orbit performance evaluation
- Successful beam tests at TRIUMF:
- Precise measurements of the Cherenkov thresholds
- Coincidence technique for direction and background rejection

Further Studies:

- Further lab tests with e source
- Rad effects on SiPM performance
- Optimization of detector optics and front-end electronics

Future Plans:

- Continue development in the ASPIRE project (ESA-EU)
- IODs
- ♦ Jovian-1 mission (UK)
- ♦ UK astronauts mission (AXIOM)
- ♦ VMMO mission (ESA)

[1] J. O'Neill, F. Lei, K. Ryden, P, Morris, B. Clewer, F. Baird, P. Sellin, C. Dyer, M. Heil, P. Jiggens, G. Santin, The High-Energy Proton Instrument (HEPI), a Compact Cherenkov Radiation Space Weather Monitor, JSWSC,Vol.15, 2025. DOI: https://doi.org/10.1051/swsc/2025023 [2] J. O'Neill, F. Baird, B. Clewer, C. Dyer, F. Lei, P. Morris, K. Ryden, P. Sellin, M. Heil, P. Jiggens, G. Santin, Characterisation of the high-energy proton Cherenkov response approaching the energy threshold for miniaturised space-borne detectors, NIM-A, 2025, https://doi.org/10.1016/j.nima.2025.170535.