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Welcome to the third Workshop on Physics Enhancing Machine 
Learning: mechanics and materials (27/11/2024)! 
 
The ambition of the Institute of Physics Applied Mechanics group is to widening participation and 
facilitate exchange of knowledge in applied mechanics: from experiments to models and including 
approaches that combine physics-knowledge with machine learning strategies. This 1-day workshop 
is part of the activities organised by the Institute of Physics Applied Mechanics group and this year is 
co-sponsored by the journal Data-Centric Engineering, Siemens Digital Industries Software and the 
IOP Materials and Characterisation Group.  
 
Thanks to the support of the Institute of Physics (IOP), to the sponsors and to the outstanding 
invited speakers (who agreed to contribute to the workshop without a refund for travel expenses), 
this workshop is organised with a free registration for in-person attendance of sixty people and 
unlimited online participation. Moreover, we were able to offer a number of travel awards to early 
career researchers to facilitate their in-person participation.  
 
The workshop features speakers are at various stages of their career and from all around the world, 
and cover a broad range of applications. Two outstanding keynote speakers, Marta D’Elia and Iuri 
Rocha, are driving the development of methods for enhancing machine learning in applied 
mechanics and materials by embedding physics-knowledge. Undoubtedly, they helped in attracting 
the overwhelming number of high-quality contributions for this workshop.   
This edition of the workshop features a session dedicated to real-world applications covering 
Nuclear, Wind Turbines and Materials Applications. These talks will provide invaluable inputs to 
current and future challenges on the application of physics-enhanced machine learning techniques. 
Moreover, 18 Lightning talks will address fundamental approaches, real-world applications and will 
also describe new benchmarks. 
 
Also this year, the excellent management skills of Claire Garland (IOP) made the difference in 
organising this workshop. Without any doubts, Claire is the most efficient event manager with whom 
I have ever worked. Thank you, Claire! I would also like to personally thank: Andrew Hyde (from 
Data-Centric Engineering) for his immediate enthusiastic reaction in sponsoring again this event, and 
Onur Atak (from Siemens) for their precious help in setting up these new sponsorships.  
 
As of today, we know that sixty people will participate in-person and more than 250 will join the 
event online. These numbers set a new record for this workshop, whose community is grooving each 
year. Most importantly, they show the importance of Physics for enhancing Machine Learning, and 
Machine Learning for enhancing Physics, both in academia and industry. On behalf of the IOP 
Applied Mechanics group, I would like to thank each person that has registered to the workshop and 
will join the exciting discussions in this rapidly evolving field where physics-knowledge is more than 
ever extremely important! 
 
Dr Alice Cicirello 
Chair of the workshop and co-opted member of the Institute of Physics Applied Mechanics group 
21/11/2024 
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Programme 

 
08:30 Registration and Coffee 

09:00 Welcome on behalf of the IOP Applied Mechanics Group and structure of the day 
Alice Cicirello, University of Cambridge 

09:10 A brief introduction to Physics Enhancing Machine Learning in solid mechanics and 
materials 
Alice Cicirello, University of Cambridge 

 Lightning Talks – Session I 

09:30 Separable Physics-Informed Neural Networks for inverse quantification of material 
properties 
Damien Bonnet-Eymard, KU Leuven 

09:37 Discovering Partially Known Ordinary Differential Equations: a Case Study on the 
Cellulose Degradation 
Kateryna Morozovska, KTH Royal Institute of Technology 

09:44 A robust multi-level data-driven Bayesian approach for stochastic model 
identification of complex nonlinear systems 
Michael McGurk, University of Strathclyde 

09:51 A study of maximum spreading ratio at zero impact velocity of mixed oils with 
Bayesian Optimisation 
Qianrong Liu, University of Birmingham 

09:58 Scour Depth Monitoring of Pile Foundations with a Data-Driven Model Updating 
Framework 
Andreas Ioakim, University of Nottingham 

10:05 Physics-informed data-driven modelling of the precipitation hardening of 6XXX 
series Aluminium alloys 
Amir Alizadeh, Brunel University London 

10:12 Data Generation and Physics-Informed Strategies for Machine-Learned Force Fields 
in Molecular Dynamics 
Saffron Luxford, University of Nottingham 

10:19 Machine Learning and DFT Integration: Development of Quantum Chemically 
Accurate Density Functionals with the QM9 Data Set 
Ali Kemal Havare, Toros University 

10:26 Physics Enhanced Capsule Robot: Pathway to Advancing Early Disease Diagnosis 
Kenneth Afebu, University of Exeter 

10:32 Coffee Break 

  



 Lightning Talks – Session II 

11:00 A benchmark for Physics-Enhanced Machine Learning research in SHM 
Francesca Marafini, University of Florence 

11:07 A Functional Ontology of Physics-Enhanced Machine Learning 
Marcus Haywood-Alexander, ETH Zurich 

11:14 Disentanglement by Backpropagation with Physics-Informed Variational 
Autoencoder 
Ioannis Koune, Technical University of Delft 

11:21 Heteroscedastic change-point Gaussian processes 
Matthew Jones, University of Sheffield 

11:28 Modelling a Nonlinear Oscillator from Experimental Data using Lagrangian Neural 
Networks 
Alan Xavier, Imperial College London 

11:35 Physics-Informed Holomorphic Neural Networks (PIHNNs) with applications to linear 
elasticity 
Matteo Calafà, Aarhus University 

11:42 Pre-trained physics-informed deep learning-based reduced order models for 
nonlinear parametrized PDEs 
Andrea Manzoni, Politecnico Di Milano 

11:49 Physics-Informed Machine Learning for the Bearing Monitoring of a long Highway 
Viaduct with Displacement Transducers 
Enrico Cianci, Politecnico di Torino 

11:56 Virtual sensing and impact force estimation on an operating ferry quay via Gaussian 
process latent force model 
Luigi Sibille, NTNU 

12:03 Efficient Wind Farm Monitoring with Multi-Task Learning 
Simon Brealy, University of Sheffield 

12:07 Lunch 

13:00 Keynote I: Hybrid surrogate modeling for multiscale simulations with Physically 
Recurrent Neural Networks 
Iuri Rocha, TU Delft 

 Session: Real-world applications of PEML 

13:45 Machine learning in action: case studies across nuclear applications 
Caroline Shenton-Taylor, University of Surrey 

14:05 The Language of Hyperelastic Materials 
Georgios Kissas, ETHZ 

14:25 Gaussian Processes for input-modeling in virtual sensing of wind turbine blades 
Silvia Vettori, Siemens 

14:45 Tea break 

15:15 Keynote II: On the use of Graph and Point networks in scientific applications 
(ONLINE) 
Marta D’Elia, ICME, Stanford 



16:00 Interactive session about challenges, opportunities, future trends 
(For in-person attendees only) 

17:00 Drinks and Pizza 

18:30 Depart 

 

  



A brief introduction to Physics Enhancing Machine Learning in solid 
mechanics and materials 
Alice Cicirello1 
1University of Cambridge, UK 

Physics-Enhanced Machine Learning (PEML), also known as Scientific Machine Learning, is a 
natural evolution of Machine Learning (ML) for guiding high-consequence decision making 
in engineering applications by developing hybrid physics-data models and tackling ML issues 
such (i) poor generalization performance and physically inconsistent/implausible 
predictions; (ii) inability of accounting for and quantifying the different sources/types of 
uncertainties; (iii) inability of providing explainable and interpretable inferences. PEML 
strategies are critical for (i) informing the physics describing the underlying dynamical 
system to be able to analyze, control and predict the wide range of behaviours of the real-
world system; (ii) providing fast and accurate solutions of hybrid physics-data models, 
including governing equations, reduced order models, prediction, forecasting and simulation 
models. During this lecture, PEML will be introduced and three broad groups of PEML 
approaches will be discussed: physics-guided, physics-encoded and physics-informed. More 
info can be found here: https://arxiv.org/abs/2405.05987 

 

  

https://arxiv.org/abs/2405.05987


Lightning talks - Session I 

Separable Physics-Informed Neural Networks for inverse 
quantification of material properties 
Damien Bonnet-Eymard1 
1KU Leuven, Belgium 
 
In the past decade, advancements in full-field measurement techniques like digital image 
correlation (DIC) have fundamentally transformed material testing. This progress opens the 
way to material testing 2.0, an era where experiments are tailored to extract the most 
information from materials. Traditional inverse quantification methods, such as the Virtual 
Fields Method (VFM) and Finite Element Method Updating (FEMU), have been used to 
derive material properties from full-field data. However, these techniques can struggle with 
complex material behaviors or geometries.  
 
Recently, Physics-Informed Neural Networks (PINNs) have emerged as a promising 
alternative, especially suited for reconstructing hidden information. Despite their potential, 
PINNs can be slow to converge and computationally demanding, limiting their practical 
application. To overcome these hurdles, a new architecture called Separable Physics-
Informed Neural Networks (SPINNs) has recently been introduced. 
 
In this study, we demonstrate how Separable Physics-Informed Neural Networks (SPINNs) 
can be applied to recover elasticity properties from simulated Digital Image Correlation 
(DIC) data. These measurements are generated using either analytical solutions or finite 
element models, and possibly corrupted with noise. We compare the performance of 
SPINNs to other existing inverse quantification techniques. The accompanying figure shows 
a side-loaded plate example, where SPINN is used to perform both field reconstruction 
(displacement and stress) and inverse quantification of the elasticity parameters 
simultaneously. 

  



Discovering Partially Known Ordinary Differential Equations: a Case 
Study on the Cellulose Degradation 
Federica Bragone1, Kateryna Morozovska1, Tor Laneryd2, Khemraj Shukla3, and Stefano 
Markidis1 
1KTH Royal Institute of Technology, Stockholm, Sweden, 2Hitachi Energy, Sweden, 3Brown 
University, USA 
 
The degree of polymerization (DP) is one of the methods for estimating the aging of 
polymer-based insulation systems, such as cellulose insulation in power components. The 
main degradation mechanisms in polymers are hydrolysis, pyrolysis, and oxidation. These 
mechanisms combined cause a reduction of the DP. However, data availability for these 
types of problems is usually scarce. This study analyzes insulation aging using cellulose 
degradation data from power transformers, modeled with ordinary differential equations 
(ODEs), in this case, Ekenstam ODE.  A modification of the Ekenstam ODE is given by 
Emsley’s system of ODEs, where the rate constant expressed by the Arrhenius equation 
decreases in time with the new formulation. We recover the governing equations of the 
degradation system using Physics-Informed Neural Networks (PINNs) and symbolic 
regression. We propose some techniques to help discover the equations that model the DP 
degradation. PINNs can help find better parameters and functions given observed field data. 
Using synthetic data and DP measurements, they can infer unknown parameters like the 
activation energy and the pre-exponential factor of the Arrhenius equation in the Ekenstam 
kinetic model. 
 
Moreover, we can also employ a combination of PINNs with symbolic regression to discover 
an unknown function of a system of equations. We assume the form of the ODE describing 
the DP degradation and the rate constant at which the initial reaction rate deteriorates in 
Emsley's system of ODEs to be unknown. We employ PINNs with an extra network to 
approximate the values of the unknown function while estimating the unknown parameter. 
Finally, we rediscover the unknown function using symbolic regression.  
 
The resulting model allows for discovering unknown parameters from the limited data set. 
For the discovery of the function, the results lead to other equation forms that would 
require additional experimental tests and field data collection to validate. 

  



A robust multi-level data-driven Bayesian approach for stochastic 
model identification of complex nonlinear systems 
Michael McGurk1, and Jie Yuan2 
1University of Strathclyde, UK 2University of Southampton, UK 
 
This work presents a robust, multi-level data-driven Bayesian framework designed to 
significantly enhance the computational efficiency of stochastic model identification for 
complex nonlinear systems, particularly in scenarios where experimental data is limited. 
Traditional Bayesian model identification typically relies on building a single, highly accurate 
data-driven model; however, this approach is often computationally prohibitive for complex 
systems. In response, we introduce a multi-fidelity data-driven model structure refined 
iteratively via a multi-level Bayesian approach, which dramatically reduces the sampling 
demands associated with high-fidelity, nonlinear simulations. 
 
Key to this framework is the incorporation of physics-enhanced machine learning 
techniques. Specifically, the framework integrates epistemic uncertainties from the multi-
fidelity data-driven models directly into the multi-level Bayesian model, an innovative step 
that enhances the robustness and predictive power of probabilistic response assessments. 
By factoring in these uncertainties, the framework supports an uncertainty-informed model 
identification process that adapts dynamically to data limitations while maintaining high 
accuracy. This is particularly valuable for high-stakes applications in which accurate 
probabilistic modeling is required but data acquisition is costly or constrained. 
 
To validate the framework, a nonlinear aerofoil aeroelastic test case incorporating limit-
cycle oscillation (LCO) experimental data from two configurations is employed. The attached 
figure shows the probabilistic bifurcation diagram that was produced with the resulting 
model predictions in the second configuration. Results show that this multi-level, data-
driven Bayesian approach achieves a substantial 76% reduction in the number of high-
fidelity simulation runs required, while delivering parameter estimations with only a 2% 
deviation from the traditional single-level Bayesian approach. This improvement 
underscores the efficacy of the physics-informed, multi-fidelity Bayesian framework in 
providing efficient, accurate, and robust model identification for complex nonlinear 
systems, setting a new standard for data-driven uncertainty quantification in 
computationally intensive applications. 

  



A study of maximum spreading ratio at zero impact velocity of mixed 
oils with Bayesian Optimisation 
Qianrong Liu1,2, Chao Jiang2, Tugce  Caykara1, Miqing Li2, and Zhenyu  Zhang1 
1School of Chemical Engineering, University of Birmingham, UK, 2School of Computer 
Science, University of Birmingham, UK 
 
Drop impact is a common and important phenomenon in both industrial and healthcare 
settings. It has been shown that dynamic wetting plays an important role in the spreading at 
low velocity. The maximum spreading ratio at zero impact velocity (beta zero) of different 
droplets depends on the balance between kinetic energy, capillary energy, and viscous 
dissipation. However, designing formulations requires great deal of resources, time, and 
cost to find maximum beta zero. Thus, a machine learning algorithm such as Bayesian 
Optimisation (BO) would be extremely valuable, which could predict the next most likely 
formulation conditions for optimal performance. In the present work, BO was introduced to 
investigate the maximum spreading ratio of formulations such as mixed oils to improve the 
performance while being cost effective. A lab-on-a-chip setup was utilised to mix different 
ratios of jojoba oil and castor oil to obtain the beta zero. The adjustment and control of the 
mixing ratio was set by the BO algorithm and Elveflow pressure controller by using five 
initial jojoba oil /castor oil ratios of 0.59, 0.50, 0.44, 0.40, and 0.33. The results showed that 
the predicted ratio, 0.61, resulted in highest value within all ratios studied by two runs. We 
evidence that BO algorithm offers a great potential to efficiently predict the optimal ratio of 
mixed oils in order to obtain maximum spreading ratio at zero impact velocity.  

  



Scour Depth Monitoring of Pile Foundations with a Data-Driven 
Model Updating Framework 
Andreas Ioakim1, Szymon  Greś2, and Luke  Prendergast1 
1University of Nottingham, UK, 2Aalborg University, Denmark 
 
This work introduces a data-driven model updating framework for scour monitoring in 
laterally loaded piles, specifically designed to minimize discrepancies between numerical 
models and real pile foundations while addressing data biases. The framework integrates 
both scour depth and soil mass and stiffness profile estimation, leveraging output-only data 
to accurately estimate critical operational parameters essential for robust structural health 
monitoring (SHM) and reliable performance assessment of pile foundations. By combining 
modal parameter estimations with a stochastic optimization approach, the model iteratively 
refines model parameters, enhancing generalization across diverse real-world conditions. 
Validated through an experimental case, this framework demonstrates a robust approach to 
scour monitoring, underscoring its potential to advance physics-enhanced machine learning-
based SHM techniques in geotechnical engineering. 

  



Physics-informed data-driven modelling of the precipitation 
hardening of 6XXX series Aluminum alloys 
Amir Alizadeh1, and Hamid Assadi1 
1Brunel University London, UK 
 
A Multiphysics system that contains numerous unknown variables with intertwined 
interrelationships bring new challenges to conventional frameworks for modelling digital 
twins. The ill-defined dynamics between these variables necessitate using data-driven 
methods such as the neural networks [1]. However, purely data-driven methods require 
extensive training data and lack physical interpretability for the end user. On the other 
hand, purely physics-based models of such engineering systems result in an extremely 
complicated model with lots of fitting parameters [2], [3], thus difficult model calibration. 
Taking the physics-based model of the precipitation hardening of 6XXX aluminum, called the 
Kampmann-Wagner Numerical (KWN) [4], a novel architectural variant of physics-informed 
neural networks (PINN), [5] combines theoretical physics-based constraints and 
experimental data to calibrate multiple fitting parameters. This variant removes the need 
for training a large number of neural network’s weights, provides a better physical 
interpretability of the predictions, and automatically learns the physical free parameters. 
 
[1] R. Tamura et al., “Materials informatics approach to understand aluminum alloys,” 
 Sci Technol Adv Mater, pp. 540–551, 2020, doi: 10.1080/14686996.2020.1791676. 
[2] R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous Second-Phase 
 Precipitation,” in Phase Transformations in Materials, Weinheim, FRG: Wiley-VCH 
 Verlag GmbH & Co. KGaA, 2005, pp. 309–407. doi: 10.1002/352760264X.ch5. 
[3] H. R. Shercliff and M. F. Ashby, “OVERVIEW NO. 90 A PROCESS MODEL FOR AGE 
 HARDENING OF ALUMINIUM ALLOYS-II. APPLICATIONS OF THE MODEL,” 1990. 
[4] E. Cinkilic, X. Yan, and A. A. Luo, “Modeling precipitation hardening and yield 
 strength in cast Al-Si-Mg-Mn alloys,” Metals (Basel), vol. 10, no. 10, pp. 1–14, Oct. 
 2020, doi: 10.3390/met10101356. 
[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A 
 deep learning framework for solving forward and inverse problems involving 
 nonlinear partial differential equations,” J Comput Phys, vol. 378, pp. 686–707, Feb. 
 2019, doi: 10.1016/j.jcp.2018.10.045. 

  



Data Generation and Physics-Informed Strategies for Machine-
Learned Force Fields in Molecular Dynamics 
Saffron Luxford1 
1University of Nottingham, UK 
 
Machine-learned force fields (MLFFs) are advancing molecular dynamics simulations by 
offering greater accuracy and adaptability compared to traditional force fields. However, the 
effectiveness of MLFFs depends on the quality and scale of the datasets used for training 
[1], with significant challenges in data curation, scalability, and computational 
costs. Overcoming these challenges is crucial for advancing molecular dynamic simulations, 
with significant implications for high-temperature superconductors, ferroelectrics, and 
energy technologies. This talk explores the theoretical underpinnings and challenges in the 
generation of datasets for MLFFs, with a focus on the need for accurate, diverse, and 
computationally feasible data that capture critical structural and dynamic features, and the 
integration of physics-informed methods with MLFFs [2] to enhance dataset robustness. 
These methods can improve generalisation and accuracy in simulations of complex 
materials, paving the way for practical applications in superconductor design and broader 
material innovations. 
[1]  G. Kim, B. Na, G. Kim, H. Cho, S. Kang, H. S. Lee, S. Choi, H. Kim, S. Lee, and Y. Kim, 
 “Benchmark of Machine Learning Force Fields for Semiconductor Simulations: 
 Systems, vol. 36, pp. 51434–51476, Dec. 2023.  
[2]  L. Xu and J. Jiang, “Synergistic Integration of Physical Embedding and Machine 
 Learning Enabling Precise and Reliable Force Field,” Journal of Chemical Theory and 
 Computation, vol. 20, pp. 7785–7795, Sept. 2024. Publisher: American Chemical 
 Society. 

  



Machine Learning and DFT Integration: Development of Quantum 
Chemically Accurate Density Functionals with the QM9 Data Set 
Ali Kemal Havare1, Evrim Ersin Kangal2, and Merve Ozcan2 
1Electric and Electronics Engineering, Photoelectronics Lab (PEL), Toros University, Turkey 
2Erdemli School of Applied Technology and Management, Computer Technology and 
Information Systems, Mersin University, Turkey 
 
Density Functional Theory (DFT) is a theoretical computational method widely used to 
understand the quantum mechanical properties of atoms and molecules. When combined 
with machine learning, DFT enables improved and faster analyses, especially in the fields of 
materials science and chemistry. Integrating DFT with machine learning is an effective 
approach to enhance model accuracy and ensure physical consistency. By reproducing DFT 
energies for a variety of molecular geometries, machine learning can be employed to 
achieve improved accuracy, allowing for the construction of quantum chemically accurate 
density functionals. 
 
The QM9 dataset contains a variety of chemical and physical properties of organic 
molecules, generated through hybrid DFT calculations. The dataset includes properties such 
as molecular energy, dipole moment, polarizability, and HOMO/LUMO energy levels, and is 
frequently used to train and test machine learning algorithms. The QM9 database, 
comprising 134,000 small molecules, is widely used in machine learning research, 
particularly in materials and molecular design. This dataset is especially valuable for 
predicting molecular structures and properties in materials science using hybrid DFT. 
 
[1]  Bogojeski, M., Vogt-Maranto, L., Tuckerman, M.E. et al. Quantum chemical accuracy 
 from density functional approximations via machine learning. Nat Commun 11, 
 5223 (2020).  https://doi.org/10.1038/s41467-020-19093-1 
[2]  L. L. Ruddigkeit, R. van Deursen, L. C. Blum, J.-L. Reymond, Enumeration of 166 billion 
 organic small molecules in the chemical universe database GDB-17, J. Chem. Inf. 
 Model. 52, 2864-2875, 2012. 
[3]  R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry 
 structures and properties of 134 kilo molecules, Scientific Data 1, 140022, 2014.   



Physics Enhanced Capsule Robot: Pathway to Advancing Early 
Disease Diagnosis 
Kenneth Afebu1, Evangelos Papatheou1, Yang Liu1, Shyam Prasad2 
1University of Exeter, UK, 2Royal Devon University Healthcare NHS Foundation Trust, UK 
 
Recent progress in microelectronics, soft and smart materials, and micro-fabrication 
technologies has led to increased research and development of small-scale robots (at 
millimetre and micrometre scales) for biomedical applications, especially early disease 
diagnosis.  
 
With early diagnosis being crucial to timely intervention and treatment outcomes, efforts 
are constantly aimed at developing sophisticated small-scale robots that can aid early 
disease diagnosis and improve patients’ survival. With majority of these robots relying on 
visual examination, results are often impaired by the intuition and experience of the 
clinician. For diseases like bowel cancer, this often results in high-miss rate of precancerous 
polyps which are difficult-to-visualise. As an alternative, current studies explores the use of 
the dynamical responses of the robot for sensing its surrounding tissues rather than the 
visual feedbacks.  This innovative approach aims to aid early diagnosis of sometimes hard-
to-visualise disease like bowel cancer, which often set off with biomechanical changes of 
infected tissues (Fig. 1a).  
 
To demonstrate this, dynamic signals from a vibration-assisted robotic capsule travelling and 
encountering lesions in the bowel (Fig. 1b) was investigated. With no established 
hypothetical relationship for mapping capsule dynamics to tissue biomechanics, a data-
driven approach involving two-stage machine learning (ML) was adopted. Firstly, supervised 
regression models were trained to predict tissue stiffnesses from the capsule’s dynamical 
signals. Secondly, unsupervised classification was performed on the predicted stiffnesses 
using K-means clustering. This way, precancerous tissues were well separated from their 
benign counterparts, achieving > 97 % accuracy for both simulation and experiment. 
However, these results were, characterised with wide and sporadically varying confidence 
intervals, indicating a high degree of uncertainty in the models’ predictions. 
 As future works, we are proposing to incorporate the physics governing the motion and 
interaction of the capsule in the bowel into the models (i.e., physics-enhanced) to improve 
their reliability and precision. 
 

 



Lightning talks - Session II 

A benchmark for Physics-Enhanced Machine Learning research in 
SHM 
Francesca Marafini1, Giacomo Zini1, Alberto Barontini1, Nuno Mendes2, Alice Cicirello3, 
Michele Betti1, and Gianni Bartoli1 
1University of Florence, Italy, 2Universidade do Minho, Portugal, 3University of Cambridge, 
UK 
 
This work presents a synthetic Structural Health Monitoring (SHM) benchmark dataset that 
simulates structural response under environmental and operational variabilities, sensor 
faults, and both fast- and slow-varying damage. Developed as a comprehensive resource, it 
includes acceleration and displacement measurements generated using parallel computing 
on a fixed-fixed steel beam. While for the dynamic response the beam is modelled as a 
Single Degree of Freedom (SDOF), the static data generation is carried out according to the 
Euler-Bernoulli theory. The conditions replicated are chosen to be as realistic as possible, 
including dynamic and static loads and temperature-dependent stiffness variations. The 
benchmark provides controlled conditions for validating and testing data-driven SHM 
methods. 
 
The dataset is well-suited for Physics-Enhanced Machine Learning (PEML) research because 
it offers a structured, realistic environment to test models that integrate physics principles 
with machine learning. PEML models could incorporate physical constraints related to the 
temperature-dependent material properties, such as expected frequency shifts due to 
temperature variations, or to load-dependent deflections due to the operational load 
variability. These physical principles help PEML models distinguish between environmental 
or operational variability and true damage-related signals in SHM applications. Each effect 
can be simulated separately or overlapped, providing a controlled testing ground for PEML 
methods to evaluate the reliability and interpretability of damage identification results, 
considering each variability singularly detangled and jointly with the rest. Additionally, by 
including both fast- and slow-varying damage scenarios alongside sensor malfunction data, 
the dataset supports the development of models that can accurately differentiate true 
structural degradation from sensor anomalies. This setup also allows PEML models to 
quantify uncertainties in their predictions, enhancing the explainability and robustness of 
damage detection and characterisation within SHM datasets. 

  



A Functional Ontology of Physics-Enhanced Machine Learning 
Marcus Haywood-Alexander1, and Eleni Chatzi1 
1ETH Zurich, Zürich, Switzerland 
 
Physics-enhanced machine learning aims to improve the capability and reduce the 
shortcomings of data- or physics-only methods. Naturally, there exist many different 
motivations and schemes within the broad-scoping genre of PEML, and, recently, 
classification of such schemes has matured beyond the description of a one-dimensional 
spectrum, to a two-dimensional spectrum of physics and data [1, 2], or even a three-
dimensional representation accounting for the involved model/algorithmic complexity [3]. 
These spectra can provide a high-level classification of PEML schemes, however, often more 
low-level details are required to make the most appropriate selection. Beyond simply 
physics and data, selection includes consideration of characteristics such as; data domain, 
downstream task, prior knowledge, as well as their interdependent relationships. Ontologies 
provide a schematic approach to objectively defining an intricate system of concepts, and by 
including interdependencies between objects, objective reasoning can be delivered. This 
talk delivers an ontological framework designed to provide a structured and comprehensive 
description of PEML methodologies. The proposed ontology leverages principles from both 
the machine learning and physics domains to support decision-making processes by offering 
insights into the compatibility of various machine learning techniques with specific physical 
phenomena, allowing researchers to select the most appropriate schemes for specific 
datasets, available prior knowledge, and the overarching objectives. 
 
[1]  Cross, Elizabeth J and Rogers, Timothy J and Pitchforth, Daniel J and Gibson, Samuel J 
 and Jones, Matthew R, A spectrum of physics-informed Gaussian processes for 
 regression in engineering, arXiv preprint arXiv:2309.10656, 2023. 
[2] Haywood-Alexander M, Liu W, Bacsa K, Lai Z, Chatzi E. Discussing the spectrum of 
 physics-enhanced machine learning: a survey on structural mechanics applications. 
 Data-Centric Engineering. 2024;5:e30. doi:10.1017/dce.2024.33 
[3]  Rebillat, Mark and Monteiro, Eric and Mechbal, Nazih, Physically Informed and Data 
 Driven Direct Models for Lamb Waves based SHM: Advantages and Drawbacks of 
 Existing Approaches, Proceedings of IWSHM 2023, 2023 

  



Disentanglement by Backpropagation with Physics-Informed 
Variational Autoencoder 
Ioannis Koune1, and Alice Cicirello2 
1Delft University of Technology, Delft, Netherlands, 2University of Cambridge, UK 
 
The existence of unobserved damage and the variability in environmental and operational 
conditions can have a significant influence on the measured response of a structure, posing 
a challenge for data-driven machine learning techniques aimed at system identification, 
damage detection and structural response prediction. Furthermore these techniques might 
suffer from poor generalization to previously unseen conditions, particularly when limited 
noisy data is available. On the other hand, accounting explicitly for these influences in 
physics-based models is often infeasible due to lack of domain knowledge or due to cost and 
time constraints. We introduce a physics-informed variational autoencoder architecture for 
disentangled representation learning with the aim of computing the posterior distribution 
over uncertain latent variables of a physics-based model of an engineering structure, and 
predicting the structural response in the presence of multiple unknown confounding 
sources in the measurements. To this end the latent space of the autoencoder is augmented 
with a set of physically meaningful latent variables that allow for domain knowledge in the 
form of prior distributions to be included, and the decoder is formulated as a combination 
of a physics-based and a data-driven model. We propose a regularization method, which 
utilizes observables that can not be directly included in the physics-based model, to 
constrain the excess flexibility of the data driven components and prevent them from 
overriding the known physics. This ensures that the physical meaning of the latent variables 
is preserved, and allows the model to disentangle features of the input signal and separate 
the known physics from unknown influences. 

  



Heteroscedastic change-point Gaussian processes 
Daniel Pitchforth1, Matthew Jones1, Samuel Gibson, and Elizabeth Cross 
1University of Sheffield, UK 
 
Balancing the relative contribution of data and physics within a physics-informed model is 
an important consideration to make when embedding knowledge into data-driven learners. 
Often, the type of physics that is included represents basic, fundamental laws, that will not 
always be valid across all areas in which we want to make predictions. In these scenarios, if 
the physics component dominates, then there is potential for this prior structure to 
negatively influence overall model performance. Conversely, in regions where it is known 
that the prior knowledge sufficiently captures the overall behaviour of interested, then an 
under utilisation of the physics can limit the advantages of physics-informed models. 
 
This talk will present a methodology for balancing the reliance of physics and data through 
the development of physics-informed change point kernels. Within a Gaussian process 
framework, a kernel structure is constructed that allows the contribution of the physics to 
be adjusted according to how well it characterises the overall process being modelled. It is 
also demonstrated how change-point kernels can be used within a heteroscedastic setting, 
where input-dependent noise can be accounted for; a common occurrence in change-point 
models.   

  



Modelling a Nonlinear Oscillator from Experimental Data using 
Lagrangian Neural Networks 
Alan Xavier1, and Ludovic Renson1 
1Imperial College London, UK 
 
Accurately modelling the dynamic behaviour of nonlinear structures is challenging due to 
the wide range of potential nonlinearities and dynamic phenomena that they can exhibit. 
Physics-guided machine learning (PGML) has emerged as an attractive way to combine prior 
knowledge with data to solve a wide range of complex, nonlinear problems in science and 
engineering. Lagrangian Neural Networks (LNNs) are a particular PGML approach that 
models nonlinear systems' Lagrangian functions using artificial neural networks (NNs). The 
Euler-Lagrange equation is then reconstructed through automatic differentiation (AD) to 
derive the equations of motion, enforcing physical consistency during training. 
 
In this work, we use LNNs to model the nonlinear vibrations of mechanical structures. We 
now explore the applicability of our methodology to a nonlinear oscillator from 
experimental data. We analyse the physical consistency of the trained model and interpret 
the identified stiffness and damping nonlinearities from the partial derivatives of the 
potential energy and dissipation functions. 

  



Physics-Informed Holomorphic Neural Networks (PIHNNs) with 
applications to linear elasticity 
Matteo Calafà1, Emil Hovad2, Allan Peter Engsip-Karup3, and Tito Andriollo1 
1Aarhus University, Denmark, 2Alexandra Institute, Denmark, 3Technical University of 
Denmark, Denmark 
 
We introduce Physics-Informed Holomorphic Neural Networks (PIHNNs [1]), an innovative 
approach for solving boundary value problems characterized by solutions expressible 
through holomorphic functions. We focus on plane linear elasticity, where the Kolosov-
Muskhelishvili representation can be leveraged to develop complex-valued neural networks 
capable of fulfilling stress and displacement boundary conditions while inherently satisfying 
the governing equations. The network architecture is carefully designed to ensure that 
approximations respect the Cauchy-Riemann conditions through specific choices of layers 
and activation functions. Additionally, we propose a novel weight initialization technique to 
address the challenge of vanishing or exploding gradients during training. Compared to 
standard Physics-Informed Neural Networks (PINNs), this inductive bias offers several 
advantages, including more efficient training — requiring evaluations only on the domain’s 
boundary — lower memory requirements due to a reduced number of training points, and 
the smoothness of the learned solution. 
 
[1]  Calafà, Matteo, et al. "Physics-Informed Holomorphic Neural Networks (PIHNNs): 
 Solving 2D linear elasticity problems." Computer Methods in Applied Mechanics and 
 Engineering 432 (2024): 117406.  

  



Pre-trained physics-informed deep learning-based reduced order 
models for nonlinear parametrized PDEs 
Simone Brivio1, Stefania Fresca1, and Andrea Manzoni1 
1Politecnico di Milano, Italy 
 
Among several recently proposed data-driven Reduced Order Models (ROMs), the coupling 
of Proper Orthogonal Decompositions (POD) and deep learning-based ROMs (DL-ROMs) has 
proved to be a successful strategy to construct non-intrusive, highly accurate, surrogates for 
the real time solution of parametric nonlinear time-dependent PDEs. Inexpensive to 
evaluate, POD-DL-ROMs are also relatively fast to train, thanks to their limited complexity. 
However, POD-DL-ROMs account for the physical laws governing the problem at hand only 
through the training data, that are usually obtained through a full order model (FOM) 
relying on a high-fidelity discretization of the underlying equations. Moreover, the accuracy 
of POD-DL-ROMs strongly depends on the amount of available data. In this talk we describe 
a recent, major extension of POD-DL-ROMs by enforcing the fulfillment of the governing 
physical laws in the training process - that is, by making them physics-informed - to 
compensate for possible scarce and/or unavailable data and improve the overall reliability. 
To do that, we first complement POD-DL- ROMs with a trunk net architecture, endowing 
them with the ability to compute the problem’s solution at every point in the spatial 
domain, and ultimately enabling a seamless computation of the physics-based loss by 
means of the strong continuous formulation. Then, we introduce an efficient training 
strategy that limits the notorious computational burden entailed by a physics-informed 
training phase. In particular, we take advantage of the few available data to develop a low-
cost pre-training procedure; then, we fine-tune the architecture in order to further improve 
the prediction reliability. Accuracy and efficiency of the resulting pre-trained physics-
informed DL-ROMs (PTPI-DL-ROMs) are then assessed on a set of test cases ranging from 
non-affinely parametrized advection-diffusion-reaction equations, to nonlinear problems 
like the Navier-Stokes equations for fluid flows. 

  



Physics-Informed Machine Learning for the Bearing Monitoring of a 
long Highway Viaduct with Displacement Transducers 
Enrico Cianci1, Marco Civera1, Valerio De Biagi1, and Bernardino Chiaia1 
1Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di 
Torino, Italy 
 
In the field of Structural Health Monitoring (SHM) for bridges, effective damage detection is 
often complicated by environmental and operational variability. Factors such as 
temperature, traffic loads, wind, and dry friction between structural components 
significantly influence data, making it essential to differentiate normal responses from 
anomalous behaviour. The aim is thus to create a predictive model that isolates these 
normal responses, establishing a baseline that highlights only displacements linked to 
structural anomalies. 
The research focuses on developing a static monitoring technique using displacement and 
temperature sensors to assess the longitudinal movements of a bridge deck. A predictive 
model is built to detect anomalies, with temperature as the primary independent variable, 
supplemented by time to capture both daily and seasonal movement cycles. These 
temperature-related movements are chosen for their major influence on bearing 
displacements and ease of monitoring, enabling the capture of the non-linear relationship 
between temperature and displacement. 
 
Machine Learning regression techniques, specifically Gaussian Process Regression and 
Support Vector Machine Regression, are employed to model the structure's thermal 
response and accurately predict expected displacements. In addition to these conventional 
Black-box models, the study introduces a Physics-Informed Machine Learning (PIML) 
approach, or Grey-box model, which integrates engineering knowledge of the bridge 
behaviour. This hybrid approach improves both predictive accuracy and interpretability, 
making it a reliable tool for bridges’ maintenance decision-making. 
 
To validate the models, an Early Warning System based on displacement thresholds is 
implemented. Simulated damage scenarios, such as bearing device failures, assess the 
models' capabilities in distinguishing anomalous displacements from environmental effects. 
The comparative analysis shows that Grey-box models outperform Black-box ones in 
accuracy and robustness, confirming the value of PIML-based modelling for enhanced 
anomaly detection. This approach supports proactive maintenance and extends the lifespan 
of critical structures, ensuring higher infrastructure resilience and safety. 

  



Virtual sensing and impact force estimation on an operating ferry 
quay via Gaussian process latent force model  
Luigi Sibille1, Alice Cicirello2, and Torodd Skjerve Nord1 
1Department of Ocean Operations and Civil Engineering, Norwegian University of Science 
and Technology, Norway, 2Department of Engineering, University of Cambridge, UK 
 
Vibrational structural health monitoring has gained widespread popularity in the recent 
decades, driven by its capacity to provide accurate and valuable information about the 
structural behavior of operating infrastructures. Despite the critical importance of ferry 
quays, which offer essential access to healthcare and goods in coastal regions, limited 
research has been conducted to understand their dynamic response during ferry impacts, 
which are believed to be a major contributor to structural degradation. This study 
investigates the application of a Gaussian process latent force model (GPLFM) to 
simultaneously estimate the structural response and ferry impact force on an operating 
ferry quay. The physics-enhanced machine learning algorithm combines physical 
information with a data-driven Gaussian process used to model the acting force. The 
posterior inference of the input and states is performed by means of a Kalman filter and a 
Rauch-Tung-Striebel smoother in an augmented state-space model. The GPLFM has 
demonstrated better accuracy and stability compared to other methodologies in different 
case studies, including virtual sensing of strain response in offshore wind turbines and 
friction force estimation on a single-storey frame with a brass-to-steel. In this work, a finite 
element model (FEM) of the ferry quay is combined with measured data collected from six 
sensors, comprising four accelerometers and two LVDTs. The virtual sensing approach is 
validated by comparing acceleration response estimated at a location that is not included in 
the identification model with data recorded from a fifth accelerometer. The identified force 
is validated through simulations using the FEM model of the structure. The results indicate 
that the GPLFM can accurately estimate the joint input-state space even with a limited 
number of sensors and without prior knowledge about the acting force. 

  



Efficient Wind Farm Monitoring with Multi-Task Learning 
S M Brealy1, L A Bull1, P Beltrando1, A Sommer1, N Dervilis1, and K Worden1 
1Dynamics Research Group, Department of Mechanical Engineering, The University of 
Sheffield, UK 
 
The offshore wind sector is currently going through a rapid expansion globally, with the UK 
specifically planning to quadruple the current 15GW of capacity by the end of the decade. 
With this, the total expenditure on operations and maintenance (O&M) will continue to rise, 
which typically represents around 40% of the lifecycle costs of a 1GW wind farm. Online 
monitoring of wind farms is commonly employed as part of O&M strategies, using data from 
instruments fitted throughout the turbines; gaining the maximum possible insight from this 
data is therefore of interest to help minimise O&M costs, and maximise the economic 
viability of offshore wind farms.Transfer Learning (TL) is a machine learning technique, 
which enables sharing of information between machines. Multi-Task Learning (MTL) is one 
such flavour of TL, whereby a model is trained on all machines simultaneously, to improve 
predictive inference on each individual machine via shared parameters. A commonly used 
approach to MTL, is the use of hierarchical Bayesian models, which can pool information 
across machines though population-level parameters, whilst accounting for machine-
specific nuances through machine-level parameters. By pooling information in this way, 
these models can better handle machines with limited data, and produce robust, 
probabilistic predictions. 
 
In this work we initially developed a hierarchical Bayesian model, applied to the task of wind 
turbine power prediction—a commonly modelled parameter for assessing the health of 
wind turbines. This model, when applied to isolated wind turbines, was found to produce 
spatial correlations in model parameters across the wind farm. This motivated the 
incorporation of a “metamodel”, which aimed to learn this spatial correlation in turbine-
level parameters through population-level “meta” parameters. Using this adapted model 
structure, the metamodel can make power predictions using turbine spatial coordinates 
alone, allowing us to predict the behaviour of previously unobserved turbines. The results 
show that the model significantly outperforms a range of benchmark models both in terms 
of model mean prediction and uncertainty. This novel modelling approach could be applied 
in situations where there are likely to be spatial correlations in a population of structures 
(such as in wind farms), and where data is difficult or expensive to obtain—including from 
real physical sensors or physics-based simulations. It could also be used as a justification to 
reduce the need (and associated costs) for sensors on every turbine, as is done currently in 
the industry. 

 

 



Keynote I 

 

Hybrid surrogate modeling for multiscale simulations with Physically 
Recurrent Neural Networks 
Iuri Rocha1 

1 TU Delft, The Netherlands 
 
Modeling material behavior across the scales is essential in improving our understanding of 
how complex materials behave and how they can be better designed. A popular approach 
for multiscale modeling is FE2 (also known as Computational Homogenization), consisting in 
nesting lower-scale FEM models at each macroscopic material point and therefore 
simulating material behavior at two scales concurrently. However, although FE2 is a 
powerful approach, it is extremely computationally expensive due to the need to solve a 
very large number of micromodels.               
                                
Machine learning-based surrogate models are a popular approach for accelerating FE2. For 
strain path dependent material behavior, recurrent neural networks such as LSTM or GRU 
are the current models of choice. However, although RNNs can be fast and accurate 
surrogates when properly trained, they often need an inordinate amount of data for training 
and their predictions lack interpretability. Here we present Physically Recurrent Neural 
Networks (PRNNs), an alternative surrogate modeling approach that directly tackles these 
two drawbacks. The key idea behind PRNNs is to build a hybrid data-physics model where 
classical constitutive models are embedded in an encoder-decoder neural network 
architecture in a completely intact way. By leaving the embedded models untouched, the 
task to be learned by the network shifts from reproducing complex time-dependent 
constitutive patterns we can already explain with our decades-old physical models to the 
much simpler one of combining the response of a number of real constitutive models 
undergoing different strain histories. 
                                              
This keynote includes a gentle introduction to PRNNs, a comparison against state-of-the-art 
RNNs for 2D elastoplastic micromodels, and our latest work on extending PRNNs to 3D 
anisotropic micromodels under large strains and a combination thermoviscoplasticity and 
hyperelasticity. We also showcase our PRNNs on a real-life validation case involving 
reproducing off-axis loading experiments on thermoplastic composite coupons and show 
how the networks can extrapolate not only to unseen strain paths, temperatures and strain 
rates but also successfully transfer to different sets of material properties while only seeing 
a single one during training. 

  



Real-World applications of PEML 

Machine learning in action: case studies across nuclear applications 
Caroline Shenton-Taylor1, and Luke Lee-Brewin1 
1University of Surrey, UK 
 
Machine learning is driving advancements across the nuclear community, encompassing 
both defence and civil applications. This talk will highlight recent research case studies, 
including using neural networks in the areas of nuclear security and nuclear 
decommissioning. Additionally, the talk explores the role of machine learning within 
radiation detection, including jewellery beads, communication fibres, and compact discs as 
dosimeters. 
 
Beyond the technical applications, the talk presents an initiative to create a dedicated 
framework for supporting Artificial Intelligence (AI) across the nuclear industry. Through 
promoting best practices, this new Nuclear AI centre aims to support the development of AI-
driven solutions, researchers working within the field, and guide policy and regulation in a 
rapidly evolving landscape. 

  



The Language of Hyperelastic Materials 
Georgios Kissas1, Siddhartha Mishra1, Eleni Chatzi1, and Laura De Lorenzis1 
1ETHZ, Zurich, Switzerland 
 
The automated discovery of constitutive laws forms an emerging research area, that focuses 
on automatically obtaining symbolic expressions describing the constitutive behavior of 
solid materials from experimental data. Existing symbolic/sparse regression methods rely on 
the availability of libraries of material models, which are typically hand-designed by a 
human expert using known models as reference or deploy generative algorithms with 
exponential complexity which are only practicable for very simple expressions. In this talk, 
we present a novel approach to constitutive law discovery relying on formal grammars as an 
automated and systematic tool to generate constitutive law expressions. Compliance with 
physics constraints is partly enforced a priori and partly empirically checked a posteriori. We 
deploy the approach for two tasks: i) Automatically generating a library of valid constitutive 
laws for hyperelastic isotropic materials; ii) Performing data-driven discovery of hyperelastic 
material models from displacement data affected by different noise levels. For the task of 
automatic library generation, we demonstrate the flexibility and efficiency of the proposed 
methodology in avoiding hand-crafted features and human intervention. For the data-driven 
discovery task, we demonstrate the accuracy, robustness and significant generalizability of 
the proposed methodology. 

  



Gaussian Processes for input-modeling in virtual sensing of wind 
turbine blades 
Silvia Vettori1, Emilio  Di Lorenzo1, Bart Peeters1, and Eleni Chatzi2 
1Siemens Industry Software , Italy, 2ETH Zurich, Switzerland 
 
Data assimilation techniques foresee the integration of both model-based and data-driven 
information to construct predictive tools that can be used for real-time monitoring of 
structural components such as wind turbine blades. These strategies are often employed for 
Virtual Sensing (VS) implementation, i.e., to infer system responses or unknown loads in 
dynamic environments.  
 
Among these techniques, Kalman-based filters are usually employed to address the task of 
joint input-state prediction by using data to reduce uncertainties associated with the 
limitations of mechanistic models, which are then leveraged to enhance the available data 
and deepen understanding of the system’s dynamic behavior. 
 
These advanced methodologies are particularly useful in addressing the challenges of 
identifying structural properties and loading conditions in wind turbine infrastructure. They 
support the dynamic characterization of wind turbine blades during pre-installation testing 
and can also be applied in real-time in the field.  
 
Assumptions about the nature of loading sources are critical for ensuring reliability of the VS 
estimated quantities. A Gaussian Process Latent Force Model (GPLFM) approach is hereby 
implemented to construct flexible data-driven a priori models for the unknown inputs, 
which are then coupled with a combined deterministic-stochastic state-space model of the 
structural component under study for Kalman-based input-state estimation.  
 
The performance of the implemented framework has been evaluated for VS through 
laboratory testing a small-scale wind turbine blade. This case study enabled an assessment 
of the method performance and an exploration of various Gaussian Process (GP) kernels, 
offering valuable insights into their suitability for developing a Gaussian Process Latent 
Force Model (GPLFM) for input-state estimation. 

  



Keynote II 

On the use of Graph and Point networks in scientific applications 
Marta D'Elia1 
1Institute for Computational and Mathematical Engineering (ICME), USA 
 
In the context of scientific and industrial applications, one often has to deal with 
unstructured space-time data obtained from numerical simulations. The data can be either 
in the form of a mesh or a point cloud. In this context, graph neural networks (GNNs) have 
proved to be effective tools to reproduce the behavior of simulated data; however, 
depending on the physical nature of the datasets, variations of vanilla GNNs have to be 
considered to ensure accurate results. Furthermore, when only a point cloud is available, 
one can also consider a graph-free approach by building a "point network" that doesn't 
require connectivity information. 
 
In this presentation we focus on particle-accelerator simulations; a computationally 
demanding class of problems for which rapid design and real-time control are challenging. 
We propose a machine learning-based surrogate model that leverages both graph and point 
networks to predict particle-accelerator behavior across different machine settings. Our 
model is trained on high-fidelity simulations of electron beam acceleration, capturing 
complex, nonlinear interactions among macroparticles distributed across several initial state 
dimensions and machine parameters. Our initial results show the model’s capacity for 
accurate, one-shot tracking of electron beams at downstream observation points, 
outperforming baseline graph convolutional networks. This framework accommodates key 
symmetries inherent in particle distributions, enhancing stability and interpretability. We 
also mention our ongoing work focused on extending these methods to autoregressive 
tracking across multiple timesteps. This research offers a powerful approach to reducing 
computational demands in particle-accelerator simulations, contributing to advancements 
in real-time optimization and control.  
 



Registered Charity no. 293851 (England & Wales) 
and SCO40092 (Scotland).

Third Physics-Enhancing  
Machine Learning workshop:  
Mechanics & Materials
27 November 2024 
Institute of Physics, London, UK


	001_Front Cover
	002_Contents
	003_Advert
	003a_Advert
	004_Abstract Book
	005_Back Cover



