

Fusion Generation Therapeutic Radionuclides

WWW.ASTRALNEUTRONICS.COM

SUMMER 2024

Worldwide cyclotron locations

https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx

Half-life of diagnostics

- The prevalence of cyclotrons around the world and proximity to imaging centres allows short lived isotopes
- It is important to match the half-life of the isotope with the half-life of the tracer molecule

lsotope	Half-life
0-15	2.03 min
N-13	10 min
C-11	20.3 min
Ga-68	68 min
F-18	109 min
Cu-64	12.7 h
Zr-89	78.4 h

Half-life of therapeutics

- By contrast therapeutic isotopes typically have much longer half-lives
- Some cyclotron and generator produced isotopes have shorter half-lives

Isotope	Half-life
At-211	7.2 hours
Pb-212	10.6 hours
Cu- 67	2.6 days
Tb-161	7 days
Lu-177	7 days
I-131	8 days
Ac-225	10 days

Location of medical isotope producing fusion reactors

- Reactors sparsely spread across the world
- Non- comprehensive list
- Many scheduled for decommissioning
- 85% of medical isotopes are produced in 6 reactors

Paradigm shift in production of therapeutic isotopes

- Our goal is to enable local production of neutron produced isotopes in the way that cyclotron have done for proton produced isotopes
- Small modular reactors which are low cost and low risk
- We can fit them into facilities with existing radiochemistry capability
- Ultimately, we hope that this technology will phase out fission produced isotopes

Energy of Fission vs fusion neutrons

- While we are able to produce isotopes in our fusion reactor typically produced in a fission reactor there are differences
 - Some obvious, others less obvious
 - A key difference is neutron energy output

Energy of Fission vs fusion neutrons

lodine – 131 demand

 Despite the more recent popularity of Lu-177 and other alpha emitting isotopes I-131 is still the most used therapeutic isotope

https://publications.jrc.ec.europa.eu/repository/handle/JRC124565

Iodine-131 Supply Chain

Iodine production

- lodine is produced through the bombardment of TeO₂
 - Te-130(n,y)Te-131
 - Te-131 (t_{1/2} 25 min)
 - Te-131 <u>___</u> I-131
 - Due to the mixture of Te isotopes in the target material other short lived lodine isotopes are also produced. Storage for 3-4 days allows these to decay away

Array design -Primary Target Zone Reactor Modules Research/Ancillary Target Zones

lodine – 131 extraction

 Iodine is separated from tellurium oxide target material through dry distillation

Ambad, 2014, J. Radioanal. Nucl. Chem.

Hot cell set up

Production Rates

- Radioisotope production numbers are the calculated activity through Monte Carlo simulations.
- Required footprint includes shielding and ancillary systems.
- Irradiation period equal to twice the half-life of the radionuclide.
- Using a 15L target volume of TeO2 for I-131

System	DT NPR(ns ⁻¹)	Flux (nsm ⁻² s) ⁻¹	Delivery year	Required Footprint (m²)	I-131/2t ^{1/2} (16 days)
Mark 1	1e11	1e9	2024	40	3.5 GBq (100mCi)
Mark 2	1e12	1e10	2025	40	35 GBq (1Ci)
Mark 2 - Array	~5e13	~4e11	2027	200	~1 TBq (27Ci)

Other Possible Isotopes

- Threshold 14MeV reactions which have not been explored
- n,2n
- n,3n
- п,р
- Π,α
- Π, γ

Potential Existing Isotopes

- Sc-44
- Sc-47
- Va-48
- Cr-51
- Cu-64
- Cu-67
- Вг-77
- Sr-89
- Y-90
- Ag-111

- I-123
- 1-124
- Sm-153
- Tb-161
- Lu-177
- Re-186
- Re-188
- Au-199
- Pb-212
- Ac-225

- Isotopes here have been used in published nuclear medicine research, from animal models through to approved drugs
- Those in Green are of greatest interest to us
- Blue are high priority but require active target material

Ac-225 and Pb-212

- Production of Ac-225 from Ra-226
 - Ra-226 (n,2n) Ra-225
 - Ra-225 ->^(t1/2 15 days) Ac-225
- Production of Pb-212 from Ra-226
 - Ra-226 (n,3n) Ra-224
 - Ra-224 ->^(t1/2 3.6 days) Rn-220 ->^(t1/2 55 s) Po-216 ->^(t1/2 145 ms) Pb-212

Patent filed on production of Ac-225 and Pb-212 using fusion neutrons

Ra226 (n,2n) or Ra225 production

Incident energy

Production rates

System	DT NPR	Flux	Ac-225	Ac-225	Pb-212	Pb-212
	(ns ⁻¹)	(nsm ⁻² s) ⁻¹	(MBq/month,	(GBq/Yr,	(MBq/month,	(GBq/Yr,
			(mCi/month))	(Ci/Yr))	(mCi/month)]	(Ci/Yr))
Mark 1	1e11	1e9	164	1.97	762	9.1
			(4.4)	(0.05)	(20.6)	(0.25)
Mark 2	1e12	1e10	1,640	19.68	7,620	91.4
			(44.3)	(0.5)	(205.9)	(2.5)
Mark 3	1e13	1e11	16,400	196.8	76,200	914.4
			(443.2)	(5)	(2059.5)	(25)

Pb-212 activities already account for a 1/10 reduction due to processing time in the Ci/yr numbers

Target for both is 24.75 grams, Ac-225 is 1mm thick and looped once around the chamber, Pb-212 is 5mm thick and is 9cm2 (so 20% of a full loop)

Isotope Production Pipeline

Research Collaboration Projects

Novel Isotope Production

 Exploring therapeutic isotopes not previously explored.

✦ Isotope Purification

Purification and isolation of fusion produced isotopes.

**Co-Founder Tom Wallace Smith visiting Kings College University Hospital London.*

Thank You!

Any Questions?