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Welcome to the Physics-Enhancing Machine Learning event 2025!

What are AI for Science, Scientific ML, and Physics-informed ML? Are they really 
accelerating discoveries and advancing mechanics, materials, physics, climate, and space?! 

These are the questions that are addressed during this exciting 3-day  PEML25 event (1-3 
October 2025, Institute of Physics Headquarters and online) that is part of the activities 
organised by the Institute of Physics (IOP) and co-sponsored by the journal Data-Centric 
Engineering (DCE) and the Institute of Physics Publishing (IOPP).  PEML25 is led by 
members of the IOP  Applied Mechanics Group special interest group, and supported by the 
Computational Physics and Materials and Characterization groups. 

Our ambitions are to widening participation and to facilitate exchange of knowledge in this 
exciting and fast-growing research area that is having fast impact also in real-world 
applications. Thanks to the support of the IOP, DCE and to the outstanding invited speakers 
(who agreed to contribute to the workshop without a refund for travel expenses), the PEML25 
is organised with an incredibly low registration fee for in-person attendance and online 
participation. Moreover, we were able to offer 17 travel awards to early career researchers to 
facilitate their in-person participation! 

PEML25 features speakers at various stages of their career and from all around the world 
and cover a broad range of applications. Each day there are outstanding keynote speakers 
driving the development of methods for enhancing machine learning by embedding physics-
knowledge in mechanics and materials (day 1), computational physics (day 2), climate and 
space (day 3). Undoubtedly, they helped in attracting the overwhelming number of high-
quality contributions. This event is building on the experience of the three previous PEML 
workshops, and features sessions dedicated to real-world applications providing invaluable 
inputs to current and future challenges on the application of PEML techniques. Moreover, it 
includes exciting special sessions on the UK strategy relating to AI for Science, the Town 
Hall for IOP’s new AI & Machine Learning Special Interest Group, and Early Career Training 
sessions.

A big thanks to Fatima Kanu (IOP event manager) for making this event a reality. I would 
also like to personally thank Marta Varela and Eloisa Bentiveglia, from the Computational 
Physics IOP group, for their precious help in setting up day 2 of this event, and Andrew Hyde 
(from Data-Centric Engineering) for his immediate enthusiastic reaction in sponsoring for the 
4th time the PEML event! 

As of today, we know that about 60 people each day will participate in-person and more than 
60 will join online the PEML25. These number show the importance of Physics for enhancing 
Machine Learning, and Machine Learning for enhancing Physics, both in academia and 
industry. On behalf of the IOP Applied Mechanics group, I would like to thank each person 
that has registered to the workshop and will join the exciting discussions in this rapidly 
evolving field where physics-knowledge is more than ever extremely important!

Dr Alice Cicirello
Assistant Professor in Applied Mechanics at the University of Cambridge 
Chair of the workshop and member of the Institute of Physics Applied Mechanics group
25/10/2025



Mechanics and Materials 

 8:45 AM - 9:15 AM Registration and Coffee 

9:15 AM - 9:30 AM Welcome on behalf of the IOP and structure of the day, 

Dr Alice Cicirello, University of Cambridge 

9:30 AM - 10:00 AM A physics-informed ML recipe book, 

Dr Daniel Pitchforth, University of Sheffield 

Lightning Talks – Session I 

10:00 AM - 10:07 PM System Parameter Identification with Partial Knowledge via Interpretable 
Hyperparameter Optimisation 

Nathan Hinchliffe University Of Sheffield 

10:07 AM - 10:15 AM A Physics-Informed GAN-ResNet Framework for Imbalanced Rotor Fault 
Diagnosis, 

Yang Fang, Shanghai Jiao Tong University 

10:15 AM - 10:22 AM Hybrid models for Active Noise Reduction 

Matt Bryan, Cambridge University 

10:22 AM - 10:29 AM Towards Fast and Interpretable Physics-Informed Learning: Second-Order 
Neurons and Mixed-Activation Networks 

João Böger, Dtu 

10:29 AM - 10:36 AM Vanishing Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems,  

Katayoun Eshkofti, Kth Royal Institute Of Technology 

10:36 AM - 10:43 AM DNN–LSTM-Based Surrogate Modeling and Load Identification for Helicopter Rotor 
Blades 

Ye Wei, Shanghai Jiao Tong University, Shanghai 

10:43 AM - 10:50 AM Physics-Aware Interpolation of Microstructures with Descriptor-Conditioned 
Generative Models 

Felix Mett 

10:50 AM - 11:20 AM Coffee Break 

Lightning Talks – Session II 

11:21 AM - 11:28 AM On the use of VAE for ecomaterial selection with applications in structural and 
aircraft design optimization 

Joseph Morlier, Isae-supaero 

11:28 AM - 11:35 AM Modelling a MDOF Beam with Harmonically Coupled Modes using Lagrangian 
Neural Networks, 

Alan Xavier, Imperial College London 

Wednesday, October 1, 2025



 
 

11:35 AM - 11:42 AM Multi-Fidelity Neural Network for Predicting Frictional Nonlinear Dynamic System 
Performance 

Peiyu Wang, University Of Southampton 
 

11:42 AM - 11:49 PM Physics Guided Neural Surrogates for Microstructure Prediction in Directed Energy 
Deposition (DED) of Inconel 718 

Alireza Fadavi Boostani, Georgia Institute of Technology 

11:49 AM - 11:56 PM Physics-Informed Neural Networks for Nonlinear Structural Dynamics 

Hassaan Idrees, IMT Lucca 

11:56 AM - 12:03 PM Self-Adaptive Physics-informed Neural Networks with Reduced Modeling and 
Basis Updating for Structural Damage Identification 

Rui Zhang, ETH zurich 

12:03 PM - 1:00 PM Lunch and networking 

1:00 PM - 1:30 PM Early career training session IOPP: Choosing the right journal and writing your 
paper 

1:30 PM - 2:15 PM Keynote, Olga Fink, EPFL – 30 mins + 15 mins for questions 

Olga Fink, EPFL 

2:15 PM - 3:00 PM Invited Talk on Real-world applications of PEML (30 minutes + 15 mins for 
question):  

Mattia Montanari, PhysicsX 

3:00 PM - 3:30 PM Coffee & Tea 

3:30 PM - 4:15 PM Keynote, Maarten Schoukens, Eindhoven University of Technology – 30 mins + 15 
mins for questions 

Maarten Schoukens, Eindhoven University Of Technology 

4:15 PM - 5:00 PM Real-world applications of PEML (30 minutes + 15 mins for question): Keith Butler, 
UCL 

Dr Keith Butler, Ucl 

5:00 PM - 6:00 PM Special Session 1 



Computational Physics 
and Applications 

8:45 AM - 9:15 AM Registration and Coffee 2 

9:15 AM - 9:30 AM Welcome on behalf of the IOP and structure of the day 2,  

Dr Eloisa Bentivegna, IBM 

9:30 AM - 10:00 AM A brief introduction to Physics Enhancing Machine Learning,  

Dr Marta Varela, St George’s University of London 
 

Lightning Talks – Session I day 2 

10:00 AM - 10:07 AM A Comparative Evaluation of Physics-informed Neural Network Architectures for 
Glucose Modelling in Type 1 Diabetes 

Harshith Yerraguntla 

10:07 AM - 10:14 AM A physics-enabled graph neural network for characterising cardiac electrophysiology 
from electrode measurements 

Annie Ching-En Chiu, Imperial College London 

10:14 AM - 10:21 AM Bridging PINNs and KANs to Handle Noisy Partial Differential Equations 

Siddhi Zanwar, PES University 

10:21 AM - 10:28 AM Learning Exchange-Correlation Functionals via Differentiable Density Functional Theory 

Antonius Freiherr Von Strachwitz, University Of Oxford 

10:28 AM - 10:35 AM Machine-learning enhanced Density Functional Theory: Learning Exchange-Correlation 
from Data 

Karim Kacper Alaa El-din, University Of Oxford 

10:35 AM - 10:42 AM openCARP-PINNs: Towards Faster Prediction of Cardiac Signals Propagation 

Balvinder Dhillon, Queen Mary University of London 

10:42 AM - 10:49 AM Emulating CO Line Radiative Transfer with Deep Learning 

Shiqi Su, University Of Leicester 

10:50 AM - 11:20 AM Coffee Break 2 
 

Lightning Talks – Session II day 2 

11:21 AM - 11:28 AM AutoEmulate: Accelerating large-scale simulations with AI 

Marjan Famili, The Alan Turing Institute 

11:28 AM - 11:35 AM Sequential data assimilation using nudging particle filter 

Thursday, October 2, 2025



Maneesh Kumar Singh, Imperial College London 

11:35 AM - 11:42 AM K-space Interpolation using Deep Koopman Autoencoders 

Wassim Ben Salah, King's College London 
 

11:42 AM - 11:49 AM Solving inverse problems of epoxy hardening with physics-informed neural networks. 

Dr. Kateryna Morozovska, KTH Royal Institute of Technology 
 

11:49 AM - 11:56 AM A Variational approach to Physics Informed Neural Network for Stochastic Partial 
Differential Equations 

Robbie Slos, UGent 
 

11:56 AM - 12:03 PM Transforming physics-informed machine learning to convex optimization (Online) 

Letian Yi, The Hong Kong University of Science and Technology (Guangzhou) 
 

12:03 PM - 1:00 PM Lunch and networking 2 

1:00 PM - 1:30 PM Early career training session IOPP: Peer-review and publication ethics 
 

1:30 PM - 2:15 PM Keynote, Frederik De Ceuster, Leuven Gravity Institute, KU Leuven – 30 mins + 15 mins 
for questions 
 

2:15 PM - 3:00 PM Invited Talk on Real-world applications of PEML (30 minutes + 15 mins for question): 
Carlos Peña Monferrer, SimZero 
 

3:00 PM - 3:30 PM Coffee & Tea 2 

3:30 PM - 4:15 PM Keynote, Payel Das, University of Surrey – 30 mins + 15 mins for questions 
 

4:15 PM - 5:00 PM Keynote, Miles Cranmer, University of Cambridge, DAMTP & Institute of Astronomy – 
30 mins + 15 mins for questions 
 

5:00 PM - 6:00 PM Special Session - Daniel Smith, EPRSC: unpacking the long-term AI for science 
opportunities 
 

 

 



Space and Climate 

 8:45 AM - 9:15 AM Registration and Coffee 3 

9:15 AM - 9:30 AM Welcome on behalf of the IOP and structure of the day 3, Dr Alice Cicirello, 
University of Cambridge 

9:30 AM - 10:00 AM A brief introduction to Physics Enhancing Machine Learning, Dr Alice Cicirello, 
University of Cambridge 

Lightning Talks – Session I day 3 

10:00 AM - 10:07 AM A perspective on fluid mechanical environments for challenges in reinforcement 
learning 

Shruti Mishra 

10:07 AM - 10:14 AM AI-driven Drifter Placement for Ocean Currents 

Rui-Yang Zhang, Lancaster University 

10:14 AM - 10:21 AM Identification of Time-Varying Modal Parameters in Offshore Wind Turbines 

Melisa Bozaci University Of Cambridge 

10:21 AM - 10:28 AM Multi-fidelity learning for physical system predictions 

Paolo Conti, The Alan Turing Institute 

10:28 AM - 10:35 AM Optimizing hp-Variational Physics Informed Neural Networks for real-world 
applications using the FastVPINNs framework 

Divij Ghose, Imperial College London 

10:35 AM - 10:42 AM Physics-Guided Graph Inference for District Heating Networks 

Keivan Faghih Niresi, École Polytechnique Fédérale de Lausanne (EPFL) 

10:42 AM - 10:49 AM HypeMARL: Multi-agent reinforcement learning for high-dimensional, parametric, 
and distributed systems 

Nicolò Botteghi, Politecnico Di Milano 

10:50 AM - 11:20 AM Coffee Break (30 minutes) day 3 

Lightning Talks – Session II day 3 

11:21 AM - 11:28 AM Neural Operators for Accelerating Flow Field Predictions 

Alan Xavier, Imperial College London 

11:28 AM - 11:35 AM A Surrogate Modelling Framework for the Correction of Structural Bias in 
SatelliteCloud Property Retrievals 

Iarla Boyce, University Of Cambridge 

Friday, October 3, 2025



11:35 AM - 11:42 AM Deep reinforcement learning for wall-bounded turbulent flows via wall 
measurements 

Giorgio Maria Cavallazzi, City St. George's, University Of London 

11:42 AM - 11:49 AM Design Optimisation of Locally Resonant Metamaterials under Uncertainty 

Niccolo Klinger, University of Cambridge 

11:49 AM - 11:56 AM Physics-enhanced Simulation-Based Inference: Likelihood-free MCMC via 
Normalizing Flows and Variational Autoencoders 

Andrea Manzoni, Politecnico Di Milano 
 

11:56 AM - 12:03 PM Reduced order modeling with shallow recurrent decoder networks 

Matteo Tomasetto, Politecnico Di Milano 
 

12:03 PM - 1:00 PM Lunch and networking 3 

1:00 PM - 1:30 PM Early career training session IOPP: maximising visibility and impact of your work 

1:30 PM - 2:15 PM Keynote, Simon Driscoll, University of Cambridge – 30 mins + 15 mins for 
questions 

2:15 PM - 3:00 PM Real-world applications of PEML (30 minutes + 15 mins for question), Shiva Babu, 
Rolls-Royce 
 

3:00 PM - 3:30 PM Coffee & Tea 3 

3:30 PM - 4:15 PM Keynote, Anh Khoa Doan, TU Delft, Faculty of Aerospace Engineering – 30 mins + 
15 mins for questions 
 

4:15 PM - 5:00 PM Invited Talk on Real-world applications of PEML (30 minutes + 15 mins for 
question): Jean Kossaifi, NVIDIA 
 

5:00 PM - 6:00 PM Town Hall for IOP’s new AI & Machine Learning Special Interest Group 
 

 



 

A physics-informed ML recipe book 
Dr Daniel Pitchforth1, Elizabeth Cross1 
1The University of Sheffield, Sheffield, United Kingdom 

A physics-informed ML recipe book, Dr Daniel Pitchforth, University of Sheffield, October 1, 2025, 
09:30 - 10:00 

Our physical understanding of how systems behave is a valuable resource. There are many ways in 
which we can utilise it to aid the capabilities of a machine learner, offering potential benefits in 
performance and interpretability. The method of physics-ML integration (recipe) will dictate the 
capabilities (deliciousness) of the final model and is an important decision to get right. Here, an 
overview of PIML model structures is presented in order of progression through a typical black-box 
machine learning pipeline, addressing how physics may be incorporated at each stage. The most 
appropriate meal to cook depends on many factors; the available ingredients, the palate of your 
guests and your available kitchen hardware. 
  



System Parameter Identification with Partial Knowledge via Interpretable 
Hyperparameter Optimisation 

Nathan Hinchliffe1 
1University Of Sheffield, Sheffield, United Kingdom 

System Parameter Identification with Partial Knowledge via Interpretable Hyperparameter 
Optimisation, October 1, 2025, 10:00 - 10:07 

One of the many benefits of introducing physics into machine learning is the increased 
interpretability of the resulting models. In some cases, where the system form has been embedded 
into the model, the hyperparameter values can be interpreted directly as parameter estimates. 
However, should the assumed model form not accurately represent the true system, and this 
discrepancy is not accounted for, bias is likely to be introduced into the parameter estimates. In 
traditional system identification approaches, one common way to capture this discrepancy is with a 
machine learner in addition to the physical model, but this introduces significant complexity. Instead, 
it would be preferable to modify an existing model to handle these discrepancies internally. 
Gaussian processes are a Bayesian, non-parametric approach to regression, characterised by a mean 
and a covariance function, and conditioned on data to form posterior predictive distributions. It has 
been demonstrated previously that a covariance function can be derived from the stochastic 
differential equation of a physical system, thereby encoding both knowledge of the model form and 
its parameters. However, any assumptions made during the derivation are also encoded, leading to a 
similar problem of model discrepancy. However, Gaussian process kernels are well known for their 
flexibility in kernel design, allowing for complex behaviours to be captured through the combination 
of simple individual covariance functions.  
In this work, a covariance function derived from the single-degree-of-freedom oscillator under white 
noise loading, characterised by interpretable hyperparameters representing the system's natural 
frequency and damping ratio, in combination with existing black-box kernels, is optimised to obtain 
parameter estimates. The hyperparameter optimisation is conducted using signals generated from 
systems under various unknown load cases, demonstrating that, in some cases, the black-box 
components in the kernel are able to capture model discrepancies and remove bias from the 
parameter estimates. 



 

A Physics-Informed GAN-ResNet Framework for Imbalanced Rotor Fault 
Diagnosis 
Yang Fang1, Ye Wei1, Xinxing Ma1, Zhenguo Zhang1 
1Shanghai Jiao Tong University, Shanghai, China 

A Physics-Informed GAN-ResNet Framework for Imbalanced Rotor Fault Diagnosis, October 1, 2025, 
10:07 - 10:15 

Rotor fault diagnosis faces significant challenges due to insufficient fault data, leading to severe data 
imbalance issues in intelligent fault diagnosis. The current data-level and algorithm-level imbalanced 
fault diagnosis methods have respective limitations, such as uneven data generation quality and 
excessive reliance on minority class information. To address this problem, this paper proposes a rotor 
fault diagnosis method driven by the fusion of mechanism-based data and feature enhancement for 
small-sample scenarios. Firstly, high-fidelity modeling of four typical rotor faults is performed based 
on rotor operating mechanisms to generate high-quality simulated fault data. Subsequently, using 
the simulated fault data as input, Generative Adversarial Networks are employed to enhance the 
feature quality of the simulated fault data. The enhanced dataset is then used to train a Residual 
Network (ResNet) model, enabling effective intelligent fault diagnosis. Experimental validation at 
rotational speeds of 2100 rpm and 2300 rpm demonstrated that the proposed approach significantly 
improved fault recognition accuracy, verifying its effectiveness and robustness in scenarios 
characterized by limited and imbalanced fault samples. This method provides a novel solution for 
small-sample intelligent fault diagnosis of modern equipment. 
  



 

Hybrid models for Active Noise Reduction  
Matt Bryan1, Ole Mattis Nielsen1,2, Tore Butlin 
1Cambridge University Engineering Department, Cambridge, United Kingdom, 2Bose Corporation , , 
United States 

Hybrid models for Active Noise Reduction, October 1, 2025, 10:15 - 10:22 

Active Noise Reduction (ANR) presents a challenging prediction task, especially in systems with 
nonlinearity; models must have both high accuracy and low latency for performance on embedded 
hardware. Purely physics-based modelling of the vibration pathway often proves insufficient, and 
data-driven methods are typically inefficient, and so hybrid models might show a performance 
benefit. The aim in particular is to separate the linear and nonlinear behaviour of a system: the 
former can be solved using a linear physics model (e.g. the governing ODE), and the latter can be the 
focus of a data-driven model, aiming to reduce the overall computation. However, separation is not 
always trivial, and is dependent on the coupling of the constituent elements. 
To that extent, hybrid physics/machine-learning models are presented, taking inspiration from 
implicit numerical schemes. Then their performance on a nonlinear benchmark model (a linear 
system driven through a Duffing spring to represent an automotive suspension system) is analysed. 
The behaviour of models is characterised, and their performance is assessed using a scaling law 
argument, drawing comparison with purely data-driven models of the same system. 
 
  



Towards Fast and Interpretable Physics-Informed Learning: Second-Order 
Neurons and Mixed-Activation Networks 
João Böger1 
1DTU, Copenhagen, Denmark 

Towards Fast and Interpretable Physics-Informed Learning: Second-Order Neurons and Mixed-
Activation Networks, October 1, 2025, 10:22 - 10:29 

Complex simulators are central to scientific research, forecasting, and real-world applications. 
However, they often require intensive computational resources and suffer from scalability issues — 
challenges amplified in the big data era. The APEX project addresses these limitations by designing 
efficient architectures for scientific simulators, exploring inductive biases, causal relations, and 
architectural innovations that learn and generalize simulator dynamics in a fast, scalable, uncertainty-
aware, and interpretable way. 

Our goal is to build surrogate models (metamodels) that generalize beyond training data, even when 
conditions change—a common challenge where standard machine learning (ML) models often fail. 
Many simulators, like those in transport, climate, epidemiology, and hydrodynamics, are governed by 
ODEs/PDEs. Efficiently learning these dynamics is crucial. To improve over traditional ML, we 
introduce inductive biases based on known system constraints. 

Quadratic neurons and domain-specific activation functions (MixFunn) [1], motivated by the analytic 
forms of differential equation solutions, integrate domain insights into network architectures. 
Combined with soft constraints in the loss function, as in Physics-Informed Neural Networks (PINNs), 
this design matches or surpasses PINNs with fewer parameters, enhancing efficiency and enabling 
closed-form solutions. 

We hypothesize that polynomial neurons and tailored non-linearities are key to scalable, 
generalizable simulator models. We evaluate MixFunn, PINNs, neuralODEs, and Equation Learners 
across four ODE-based benchmarks: the SIR model, Lotka–Volterra system, Duffing oscillator, and 
Van der Pol oscillator. Two recent metrics [2] assess out-of-distribution (OOD) learning and 
robustness to noise. 

This work highlights how architectural choices and domain-informed priors can close the gap 
between robustness, speed, and generalization, paving the way for compact, interpretable, and 
efficient scientific surrogates. 

[1] arXiv:2503.22528, 2025

[2] arXiv:2402.18377, 2024



 

Vanishing Stacked-Residual PINN for State Reconstruction of Hyperbolic 
Systems 
Katayoun Eshkofti1, Matthieu Barreau1 
1Division of Decision And Control Systems, Digital Futures, Kth Royal Institute of Technology, 
Stockholm, Sweden 

Vanishing Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems, October 1, 2025, 
10:29 - 10:36 

State reconstruction for systems governed by quasi-linear hyperbolic partial differential equations 
(PDEs) is significantly challenging due to discontinuities and shock formations, which violate the 
smoothness assumptions that typically enable physics-informed neural networks (PINNs) [1] to be 
effective. Moreover, to the best of our knowledge, no study has demonstrated that PINNs can 
effectively learn hyperbolic PDEs underlying traffic state models with acceptable accuracy. This 
provides a strong motivation to develop a more effective state estimation method for hyperbolic 
PDEs. 
 
To address these issues, we propose the vanishing stacked-residual PINN [2], which incorporates 
prior knowledge in the form of a function series. This approach combines the vanishing viscosity 
method from applied mathematics, curriculum learning from machine learning, and stacked PINNs 
[3] in an effective manner. The methodology ensures convergence to the unique entropic solution of 
the hyperbolic PDE. 
 
As illustrated in Fig. 1, training begins with a baseline PINN that solves a parabolic regularization of 
the main PDE using a sufficiently large viscosity coefficient. This guarantees that the approximated 
solution is entropic and that the PDE operator is sufficiently Lipschitz-continuous, allowing the PINN 
to learn the regularized solution effectively. The resulting low-fidelity solution is then fed into and 
refined by a sequence of residual blocks, each trained with a successively smaller viscosity 
coefficient. This forms a multi-stage correction process inspired by the vanishing viscosity method. 
Applied to traffic state reconstruction using the Lighthill-Whitham-Richards (LWR) model with 
Greenshield’s flux, this method yields an order-of-magnitude improvement in accuracy over the 
vanilla PINN [1]. In addition to enhanced accuracy, the residual correction networks also stabilize 
learning, leading to lower errors and reduced variability in state estimations. 
 
 
References 
[1] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems involving nonlinear partial differential 
equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707. 
 
[2] Katayoun Eshkofti and Matthieu Barreau. “Vanishing Stacked-Residual PINN for State 
Reconstruction of Hyperbolic Systems”. In: IEEE Control Systems Letters (2025). 
 
[3] Amanda A. Howard, Sarah H. Murphy, and al. “Stacked networks improve physics-informed 
training: Applications to neural networks and deep operator networks”. In: Foundations of Data 
Science (2025). 
  



 

DNN–LSTM-Based Surrogate Modeling and Load Identification for 
Helicopter Rotor Blades 
Ye Wei1, Yang Fang1, Xinxing Ma1, Zhenguo Zhang1 
1Shanghai Jiao Tong University, Shanghai, China, Shanghai, China 

DNN–LSTM-Based Surrogate Modeling and Load Identification for Helicopter Rotor Blades, October 1, 
2025, 10:36 - 10:43 

A high-fidelity structural model, together with the reliable identification of distributed loads, is crucial 
for enhancing flight performance and ensuring operational safety. Although various techniques have 
been developed for model updating and load reconstruction, their effectiveness often depends on 
prior knowledge of the system and requires meticulous tuning of algorithmic parameters. In this 
study, a novel neural network framework is proposed to construct surrogate models for both forward 
and inverse problems of a helicopter blade. Specifically, the rotor blade model is first updated using a 
Deep Neural Network (DNN) based on modal information. Subsequently, the time-varying distributed 
loads are identified by a Long Short-Term Memory (LSTM) network trained on the measured bending 
moment responses. Application to the benchmark XH-59A rotor blade model showcases the 
method’s effectiveness in refining structural models and accurately reconstructing distributed loads. 
  



Physics-Aware Interpolation of Microstructures with Descriptor-Conditioned Generative Models

F. Mett1,∗) and M. Beer1,2,3)

1)Institute for Risk and Reliability, Leibniz University Hannover, Callinstr. 34, 30167 Hannover, Germany.
2)Institute for Risk and Uncertainty, University of Liverpool, Liverpool L69 7ZL,

610101 Liverpool, United Kingdom.
3)International Joint Research Center for Engineering Reliability and Stochastic Mechanics,

Tongji University, Siping road 1239, 200092 Shanghai, China.
∗)Corresponding author, mett@irz.uni-hannover.de

Abstract
Material behaviour is strongly determined by its microstructure, which can change in response to
processing parameters and evolution mechanisms. However, these dependencies are often only par-
tially understood and expensive to capture through direct simulations or experiments. Generative
artificial intelligence has recently shown great promise in producing synthetic microstructures that
resemble training data, thereby reducing experimental effort. Previous work has demonstrated that
generative models conditioned on processing parameters can interpolate between microstructure
distributions when only discrete measurements at selected parameters are available [Tang, 2021],
underscoring their potential to reduce experimental effort. Separately, conditioning on physical
descriptors has been proposed as a means of achieving controlled microstructure generation [Kishi-
moto, 2023].
In this work, we combine these two perspectives and investigate physics-aware interpolation using
Generative Adversarial Networks [Goodfellow, 2014] conditioned on the phase volume fraction, a
low-order physical descriptor of the microstructure. To guide the generator, we introduce an ad-
ditional loss term that explicitly communicates the physical meaning of this quantity. This setup
allows the model to generate microstructures consistent with prescribed phase volume fraction val-
ues. Because these values are easily interpretable, they form a natural space in which interpolation
can be carried out in a meaningful way. By supplying interpolated phase volume fractions to the
trained generator, we obtain synthetic microstructures at unmeasured processing parameters or evo-
lution steps, effectively letting the generator perform the interpolation while respecting expected
physical trends.
We demonstrate this approach on a synthetically generated set of microstructures with prescribed
and known nonlinear evolution. The results show how interpolation in the descriptor space can gen-
erate transitions between microstructure distributions, while also revealing the method’s limitations.
These findings highlight descriptor-conditioned generative models as a promising tool for physics-
informed interpolation across microstructure evolution scenarios, potentially reducing the need for
exhaustive experimental sampling.

References
J. Tang, X. Geng, D. Li, et al. Machine Learning-Based Microstructure Prediction during Laser

Sintering of Alumina. Scientific Reports, 11(1):10724, 2021.
M. Kishimoto, Y. Matsui, H. Iwai. Conditional Generative Adversarial Network for Generation of

Three-Dimensional Porous Structure of Solid Oxide Fuel Cell Anodes with Controlled Volume
Fractions. Journal of Power Sources, 580:233411, 2023

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al. Generative Adversarial Nets. Advances in
Neural Information Processing Systems, 27, 2014



 

On the use of VAE for ecomaterial selection with applications in structural 
and aircraft design optimization 
Joseph Morlier1, Shantanu Sapre1, Almudena Cobo-Urios1, Alvaro Silva-Vilela-Caridade1 
1Isae-supaero, Toulouse, France 

On the use of VAE for ecomaterial selection with applications in structural and aircraft design 
optimization, October 1, 2025, 11:21 - 11:28 

 This work presents the use of variational autoencoders and mixed-variable solvers as a proposal for 
structural optimization and material selection. This approach allows for gradient-based, multi-
objective optimization of mechanical and environmental trade-offs (cost, energy, waste, density, 
young modulus, and yield stress). Optimal material solutions are identified through the analysis of 
Pareto fronts, revealing hybrid, potentially non-existent materials that offer superior trade-offs 
across conflicting objectives. The proposed methodology integrates machine learning and design 
optimization to support sustainable aerospace innovation, and the selected material is later 
reintegrated into the Aircraft Design model to assess their impact on aircraft performance. This 
comprehensive framework bridges data-driven design with engineering constraints, offering a novel 
pathway for eco-efficient material selection in early-stage aircraft design. In the MOO context we 
adopt the Multi-Gradient Descent Algorithm (MGDA) to perform multi-objective 
optimization directly within the learned latent space 
 
This work is an extension of this work (Yepes Llorente, L., Morlier, J., Sridhara, S., & Suresh, K. (2024). 
A hybrid machine learning and evolutionary approach to material selection and design optimization 
for eco-friendly structures. Structural and Multidisciplinary Optimization, 67(5), 69.)  applied to 
aircraft design  
  



 

Modelling a MDOF Beam with Harmonically Coupled Modes using 
Lagrangian Neural Networks 
Alan Xavier1, Ludovic Renson1 
1Imperial College London, London, United Kingdom 

Modelling a MDOF Beam with Harmonically Coupled Modes using Lagrangian Neural Networks, 
October 1, 2025, 11:28 - 11:35 

Accurately modelling the dynamic behaviour of nonlinear structures is challenging due to the wide 
range of potential nonlinearities and dynamic phenomena that they can exhibit. Physics-guided 
machine learning (PGML) has emerged as an attractive way to combine prior knowledge with data to 
solve a wide range of complex, nonlinear problems in science and engineering. Lagrangian Neural 
Networks (LNNs) are a particular PGML approach that models nonlinear systems' Lagrangian 
functions using artificial neural networks (NNs). The Euler-Lagrange equation is then reconstructed 
through automatic differentiation (AD) to derive the equations of motion, enforcing physical 
consistency during training.  
 
Previously, we used LNNs to model the nonlinear vibrations of a single-degree-of-freedom (SDOF) 
Duffing oscillator. We extend our earlier works to address systems with multiple-degrees-of-
freedoms (MDOF) and demonstrate the method on a beam structure exhibiting isolated responses. 
We analyse the physical consistency of the trained model and interpret the identified stiffness and 
damping nonlinearities from the partial derivatives of the potential energy and dissipation functions. 
The trained LNNs are then used to trace frequency response and bifurcation curves, which can be 
directly compared to curves measured with control-based continuation.  
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Accurate analysis of amplitude-dependent nonlinear behaviour is essential for the design and 
optimisation of frictional nonlinear dynamical systems. However, repeated analyses during the 
design process often demand substantial computational resources. Surrogate modelling offers an 
effective alternative to accelerate this process. While high-fidelity numerical methods, such as the 
Harmonic Balance Method (HBM) enhanced by the Extended Periodic Motion Concept (EPMC) for 
nonlinear modal analysis, are effective in capturing amplitude-dependent responses, their 
computational cost escalates with the demand for higher accuracy, creating a trade-off between 
accuracy and efficiency. To address this challenge, a multi-fidelity neural network (MF-NN) is 
developed to integrate data from different fidelity levels, reducing the sampling cost while 
maintaining model accuracy. In this work, the MF-NN is applied to predict nonlinear modal 
characteristics, efficiently capturing the amplitude-dependent natural frequencies and damping 
ratios. Two case studies are conducted: first, a two-degree-of-freedom system with friction contact is 
examined to evaluate MF-NN performance under varying ratios of high- and low-fidelity samples, 
with results benchmarked against a Co-Kriging model. Second, a high-dimensional bladed-disk system 
with a ring damper is investigated to assess the approach in a practical engineering context. The 
results demonstrate that the MF-NN effectively integrates multi-fidelity data, achieving accurate 
predictions of dynamic performance with reduced computational effort compared to single-fidelity 
surrogate models. This research highlights the potential of multi-fidelity surrogate modelling as a 
robust and efficient tool for nonlinear dynamic analysis of rotating structures, enabling improved 
computational efficiency in practical applications. 
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Inconel 718, October 1, 2025, 11:42 - 23:49 

Additive manufacturing processes such as Directed Energy Deposition (DED) involve complex, 
coupled thermal–microstructural dynamics that challenge conventional numerical modeling in terms 
of accuracy and computational cost. Physics-Informed Neural Networks (PINNs) offer a promising 
alternative: they are mesh-free, enforce governing PDEs directly, and can learn from sparse 
experimental data, making them well-suited for in-process monitoring and control in DED. 
This study introduces a Physics-Informed Neural Network (PINN) framework coupled with a 
simplified Kobayashi phase-field model to predict microstructural evolution during Directed Energy 
Deposition (DED) of Inconel 718, integrating experimentally sourced grain-size data (~104 µm 
average) for training. Governing thermal and grain-growth PDEs are embedded into the PINN loss 
function, alongside real measurement values. Importantly, all data within a 4 mm radius of the melt 
pool are held out for validation, enabling rigorous evaluation of model generalization. 
Despite excluding melt-pool region data during training, the PINN accurately predicts temperature 
and grain-size distributions there, thanks to embedded physical laws—a capability supported by 
recent literature on PINN extrapolation into unseen domains. Benchmarking against finite element 
method (FEM) reveals that, for steady state 2D heat equations, FEM typically solves to 10⁻⁵ accuracy. 
However, once trained, the PINN delivers near-instantaneous, mesh-free inference—offering 10×–
20× faster evaluation of new scenarios than traditional FEM interpolation. 
Our optimized model, trained using the Adam algorithm with a composite loss (heat PDE residuals + 
phase-field residuals + experimental data loss), achieves R² > 0.9 on validation data. These results 
demonstrate that our PINN+phase-field framework provides a physically consistent, computationally 
efficient, and experimentally validated solution for microstructure modeling in DED processes. The 
method’s rapid inference capability and flexibility position it as a powerful tool for in-situ 
microstructural control and process optimization in additive manufacturing of superalloys. 
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Physics-Informed Neural Networks for Nonlinear Structural Dynamics, October 1, 2025, 11:49 - 23:56 

Physics Informed Neural Networks (PINNs) have emerged as a versatile framework for solving 
complex nonlinear dynamical systems. It offers a novel approach to modelling in scenarios where 
classical solvers struggle with strong nonlinearity, limited data, or the need for robust, interpretable 
predictions. In this work we investigate these challenges using PINNs over two nonlinear systems 
including Duffing oscillator and a belt-driven motor system with quadratic damping and cubic 
stiffness. To this end, we explored two key strategies: (1) ansatz-based trial solution, and (2) adaptive 
weighting of the loss function. The ansatz-based approach which embedded the initial condition 
analytically in the network output reduced the training cost by 5x in terms of simulation time cost 
and provided stable predictions across time windows which covered nearly the entire nonlinear 
transient regime. Our approach yielded comparative results as compared to Newmark-Beta 
benchmark with considerable error. Our study demonstrates that targeted architectural and training 
innovations can substantially mitigate spectral bias and improve the efficiency of PINNs for complex 
dynamic systems. Ongoing work explores dynamic loss weighting, while future directions will 
integrate residual-based adaptive sampling and curriculum learning to further automate and 
accelerate convergence for real-world, data-scarce nonlinear systems. 
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Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool for solving inverse 
problems in structural dynamics by embedding physical laws into neural network training. However, 
applying PINNs to real-world structural health monitoring remains challenging due to high 
computational demands and difficulties in balancing physics constraints with sparse, noisy 
measurements. 
 
To overcome this challenge, this work proposes a hybrid framework that integrates PINNs with 
reduced-order modeling (ROM) to enable scalable and efficient damage identification. Structural 
dynamics are projected onto a low-dimensional subspace using a reduced basis (e.g., via Proper 
Orthogonal Decomposition), allowing predictions in the reduced coordinate space, thus improving 
efficiency prior to recovering full-field responses. A key contribution is the implementation of basis 
updating strategies that ensure consistency between the reduced basis and the evolving system 
stiffness affected by damage. This includes both online basis updating—using interpolation or 
clustering among precomputed bases during training—and sequential retraining with transfer 
learning, in which a PINN trained on the healthy-state basis is retrained after parameter updates 
using previously learned weights to accelerate convergence. Additionally, a self-adaptive loss 
weighting strategy based on Neural Tangent Kernel (NTK) theory is introduced to dynamically balance 
the influence of data and physics constraints during training. This improves convergence behavior 
and robustness under varying levels of noise and measurement sparsity.  
 
The proposed framework is validated using the IASC-ASCE benchmark structure, which simulates 
realistic structural behavior of a lab-scale steel frame under various damage scenarios, sensor 
configurations, and modeling uncertainties. Results show accurate identification of damage location 
and severity, and high-fidelity reconstruction of structural response, even with incomplete and noisy 
data. By combining physics-informed learning with reduced modeling, basis adaptation, and adaptive 
training dynamics, the framework offers a scalable and interpretable solution to structural 
identification—advancing the real-world applicability of PEML techniques. 
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Deep learning has become an essential tool in many engineering applications. However, its 
effectiveness is often limited by its reliance on large, representative, and well-labeled datasets. In 
contrast, condition monitoring data from complex systems is typically sparse, unlabeled, and 
unrepresentative, making it difficult to apply purely data-driven methods effectively. Moreover, deep 
learning models often perform poorly in extrapolation scenarios—common in engineering systems 
with long service lives and evolving operational regimes. 
 
To address these limitations, integrating physical laws and domain knowledge into deep learning 
frameworks has shown significant potential. This presentation will explore a range of approaches 
that integrate physics-based principles into machine learning models. Particular attention will be 
given to the use of structural inductive biases—such as those introduced by physics-informed graph 
neural networks—to improve model robustness, generalization and extrapolation. 
 
Finally, the talk will examine emerging methods in symbolic regression that aim to close the loop 
between data-driven learning and physical understanding, enabling the discovery of interpretable, 
physics-consistent models from data. 
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In engineering, a 99% accurate AI model can mean 100% failure—not just mechanical disasters, but 
models gathering dust because engineers don't trust them, can't integrate them, or find them 
irrelevant to real-world constraints. Three decades after transitioning from physical prototypes to 
virtual simulations, we're entering a second revolutionary transformation with AI-driven Large 
Physics Models. At PhysicsX, we've learned that making physics-enhanced machine learning (PEML) 
truly useful requires more than impressive accuracy—it demands models that engineers actually use, 
trust, and seamlessly integrate into their workflows. 
 
This talk explores real-world PEML applications in the aerospace sector, revealing how physics 
constraints transform theoretically useful models into practically useable tools. I'll share hard-won 
insights from deploying multi-physics surrogates that operate in real-time, enabling automated 
optimization over vast design spaces previously computationally intractable. The key to solving 
engineering's toughest challenges—from bridging the gap between ML researchers and domain 
engineers to quantifying uncertainties while ensuring physical consistency—lies in creating an 
interoperable ecosystem where specialized AI agents collaborate seamlessly. I'll demonstrate this 
through our agentic workflows powering foundation models: Large Language Models (LLMs) that 
understand engineering intent and constraints, Large Geometry Models (LGMs) that generate and 
manipulate complex 3D designs, and Large Physics Models (LPMs) that predict physical behavior 
across multiple scales and phenomena. By combining foundation models with physics on a modular 
platform, we are turning yesterday's 100% failure into tomorrow's engineering breakthroughs. 
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In most engineering applications, strong prior knowledge is present in the form of pre-existing 
models, provided by system designers and engineers, even though they do not capture all the 
nonlinear dynamics of the real-life system. These models are currently not accounted for during 
black-box system identification / data-driven modelling tasks.  
We aim to develop a comprehensive data-driven modelling framework to obtain accurate and 
interpretable models of measured complex system dynamics by augmenting an approximate pre-
existing model through black-box nonlinear system identification. During this talk we will explore 
new theory and algorithms to 1) provide model structures, algorithms and theory that flexibly 
interconnect the pre-existing model and the black-box completion 2) study the interpretability of 
augmented models. 
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The discovery and design of new materials is critical for advancing carbon-emission reducing 
technologies such as renewable energy and electric vehicles. Experimental discovery of new 
materials is typically slow and costly, quantum mechanics (QM) calculations have brought 
computational materials design within reach. However, QM calculations are often limited to 
relatively small sets of materials, as their computational costs are too great for large-scale screening, 
this is the case for calculating properties required for new energy materials. In this talk I will present 
examples of how we have been adapting concepts from language models to help with building fast 
and efficient models for materials properties. I will show how we can learn distributed 
representations of atomic species directly from large databases of crystallographic structures [1, 2]. I 
will also show how a large language model trained on crystallographic data can help to solve one of 
the outstanding challenges of solid-state chemistry; the prediction of structure from chemical 
formula [3]. 
 
[1] npj Comput Mater 8, 44 (2022) 
 
[2] APL Machine Learning 2,  (2024) 
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A Comparative Evaluation of Physics-informed Neural Network Architectures for Glucose Modelling in 
Type 1 Diabetes, October 2, 2025, 10:00 - 10:07 

Introduction  
Type 1 diabetes (T1D) affects over 8.4 million people worldwide. As the pancreas of T1D patients 
cannot synthesise insulin, they require lifelong administration of this hormone to maintain healthy 
blood glucose levels. Recently, closed-loop artificial pancreas systems (APS), which integrate 
continuous glucose monitors (GCM), insulin pumps, and electronic control algorithms, have emerged 
as promising technologies to reduce the burden of insulin management and improve outcomes in 
T1D.  
 
Despite their promise, fully automated insulin dosing remains elusive, partly due to difficulty 
forecasting blood glucose on a per-patient basis. Physics-enhanced machine learning offers a 
compelling solution, enabling both glucose prediction and estimation of physiological parameters 
related to insulin dynamics.  
 
Methods  
We propose a Physics-Informed Neural Network (PINN) approach that embeds the 2015 Magdelaine 
glucose-insulin-carbohydrate model into a deep learning framework via differentiable residual 
constraints. The PINN is trained exclusively on glucose trajectories, with insulin and carbohydrate 
inputs supplied but unsupervised. To evaluate trade-offs, we benchmark three PINN architectures: 
(a) a vanilla multilayer perceptron (MLP), (b) a modified MLP with encoder-mixing and gating, and (c) 
a gated recurrent unit (GRU)-based model. All models are assessed on 10 synthetic and 5 real-world 
patient CGM datasets using two criteria: blood glucose forecasting accuracy and, for synthetic data, 
insulin sensitivity estimation accuracy.  
 
Results & Discussion  
After individually optimising hyperparameters, we observe a trade-off between glucose prediction 
and physiological parameter estimation (see Figure). The MLP PINN (a) yields the most accurate 
parameter estimates but higher forecasting error. The GRU PINN (c) excels at prediction but fails to 
recover robust physiological states. The modified MLP (b) shows greater output variance and limited 
biological plausibility.  
 
Future work will focus on identifying which PINN architectural trade-offs best support safe and 
effective insulin dosing under clinical constraints 
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A physics-enabled graph neural network for characterising cardiac electrophysiology from electrode 
measurements, October 2, 2025, 10:07 - 10:14 

Cardiac arrhythmias—irregular heart rhythms caused by abnormal generation or propagation of 
electrical signals—affect millions worldwide. Most often, treatment strategies rely on probing 
extracellular electrical potentials inside the heart and destroying cardiac regions adjacent to 
empirically-defined abnormal electrical signals. Targeting precise abnormal regions would improve 
the success of these procedures and make them shorter and safer.  
 
This project aims to characterise the electrophysiological properties of cardiac tissue using physics-
enabled graph neural networks (GNN).  
 
We train a graph neural network (GNN) on physical simulations so that it can convert extracellular 
potentials measured by a clinical device to transmembrane potentials. These are not measurable 
clinically but enable the characterisation of local electrophysiological properties to allow better 
targeting of abnormal cardiac regions.  
 
Our GNN model naturally mirrors the biophysics of cardiac extracellular potentials in the following 
sense. There are two types of nodes: 1) those representing the electrodes with extracellular 
potentials and 2) those representing points where transmembrane potentials are known. We 
connect nodes from one type to the other if their Euclidean separation falls below a predefined 
threshold and assign edge weights inversely related to that distance. This construction mimics how 
an electrode “sees” the tissue -- extracellular potentials are generated by a weighted summation of 
nearby electric fields, with closer sources contributing more strongly. By embedding the 
electrode‑tissue coupling directly into the network’s architecture, our approach paves way for 
physics informed guidance of arrhythmia diagnosis and treatments.  
 
The transmembrane potentials retrieved achieved a root-mean-square error of 0.43 on test nodes. 
With the transmembrane potentials, we can then compute parameters such as local tissue 
conductivity and excitation thresholds using physics-informed neural networks or other inverse 
parameter estimation schemes. 
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Physics-Informed Neural Networks solve partial differential equations by embedding physical laws 
into neural architectures but suffer significant noise sensitivity that leads to degraded performance 
and physically inconsistent predictions on real applications. 
We introduce a hybrid physics-data framework resolving PINN's noise sensitivity through the 
incorporation of Kolmogorov-Arnold Networks (KANs) as preprocessing denoising modules. KANs 
utilize learned adaptive activation functions with inherent filtering of high-frequency noise and 
conservation of physical dynamics. Denoised inputs are subsequently fed to PINNs to solve forward 
PDEs, forming a resilient pipeline preserving physical consistency under noisy scenarios. 
 
We assess our framework on Burgers', Heat, and Wave equations with skewed normal noise 
simulating real-world asymmetric error distributions. Results indicate impressive MSE reductions: 
Burgers' equation goes from 0.047874 (noisy) to 0.016759 (KAN-processed), nearly achieving clean 
performance (0.016251). Heat and Wave equations indicate comparable improvements, with Heat 
equation displaying spectacular recovery from extreme noise-induced degradation. 
 
Our hybrid method illustrates Physics-Enhanced Machine Learning through the fusion of domain 
expertise (physical principles) and adaptive data processing (noise elimination), and the resulting 
models are physically sound and resilient to real-world imperfections. The framework solves core 
issues: prevailing over poor generalization and physically unrealistic forecasts while being 
interpretive through physics-inspired constraints. 
Results show structure-dependent noise sensitivity among PDE types, offering physics-informed 
guidance for focused enhancements in scientific computing applications where resilience to noise 
and physical consistency are critical. 
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Learning Exchange-Correlation Functionals via Differentiable Density Functional Theory, October 2, 
2025, 10:21 - 10:28 

Density Functional Theory (DFT) is a widely used method in quantum chemistry and materials 
science, where the ground-state energy of a many-electron system is determined from its electron 
density. At the core of DFT lies the exchange-correlation (XC) functional, whose exact form is 
unknown and typically approximated through empirical or semi-empirical models. Recent efforts in 
machine learning have aimed to improve these approximations by learning XC functionals from data, 
often relying on large datasets of spatially resolved densities. 
 
In this talk, we present a physics-enhanced machine learning strategy to reconstruct the exchange-
correlation functional using only sparse scalar energy data. Our approach is based on a differentiable 
implementation of Kohn-Sham DFT, where the self-consistent cycle is made fully differentiable and 
used to implicitly regularize the learning process. We train neural network functionals to recover the 
Perdew-Wang local density approximation (PW-LDA) solely from synthetic energy data, without 
accessing electron densities during training. 
 
This method exploits the structure of the underlying physics to constrain and guide learning, resulting 
in accurate and physically consistent models from minimal data. By circumventing the need for high-
dimensional density inputs, this framework opens new opportunities for learning from experimental 
observables and domain-specific data, where access to full electronic structure is limited. Our results 
illustrate the power of differentiable programming in embedding first-principles constraints into ML-
driven model discovery. 
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In density functional theory, simpler exchange-correlation (XC) approximations such as the local 
density approximation (LDA) are favoured for computational speed but entail a loss of information, 
leading to a trade-off between accuracy and generality. Here, we train a neural LDA on gold standard 
data using a differentiable Kohn–Sham solver, imparting system-specific expertise for water and 
sacrificing generality for accuracy. We demonstrate how this model achieves previously unseen 
accuracy on the training domain, and discuss how it generalizes to other domains. The low data 
requirements for this approach and high efficacy provide a promising avenue to enhance simulations 
going forward, and emphasize the utility of differentiable simulations in physics. 
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Investigation and prediction of cardiac electrophysiological (EP) properties are beneficial in 
developing personalised diagnostics and treatments for cardiac arrhythmias. Physics-Informed Neural 
Networks (PINNs) combine data-driven learning with underlying physical laws. In cardiac 
electrophysiology, PINNs have been used in conjunction with biophysical models to predict electrical 
propagation faster than conventional biophysical modelling.  Here, we proposed a novel toolbox with 
PINNs using the Mitchell-Schaeffer and Aliev-Panfilov ionic models to show fast and precise 
prediction of electrical wavefront propagation through in-silico heart tissue.  For the generation of 
training data, we utilised OpenCARP, an open-source cardiac electrophysiology simulator. We 
conducted the experiments on a 2D in-silico grid with 3 different scenarios of wavefront initiation (a 
centrifugal wave from single or double corners of a 2D grid and a planar wave). We showed that 
openCARP-PINNs can accurately (with a mean RMSE below 0.2 in all experiments) and quickly 
(execution time of 16 ms) predict the shape of the action potential for both ionic models. Moreover, 
openCARP-PINNs precisely define the wavefront of signal propagation (mean Dice score between 
masks of ground truth and predicted transmembrane potential for the nodes in the testing set is 
more than 0.9). The proposed framework has the potential to guide treatment based on faster digital 
twins of patient hearts. 
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The adoption of AI-based techniques in theoretical research areas is often slower than in other fields 
due to a perception that AI-based methods lack rigorous validation against theoretical counterparts. 
In this talk, we introduce COEmuNet, a surrogate model designed to emulate carbon monoxide (CO) 
line radiation transport in stellar atmospheres. 
COEmuNet is based on a three-dimensional residual neural network and is specifically trained to 
generate synthetic observations of evolved star atmospheres. The model is trained on data from 
hydrodynamic simulations of Asymptotic Giant Branch (AGB) stars perturbed by a companion. Given 
a set of input parameters, including velocity fields, kinetic temperature distribution, and CO 
molecular number densities, the COEmuNet model emulates spectral line observations with a 
median relative error of ~7% compared to a classical numerical solver of the radiative transfer 
equation, while being 1000 times faster. 
This presentation will also include some of our preliminary results, demonstrating the improved 
performance achieved through Physics-Informed Machine Learning (PIML) applied to the same 
problem, highlighting its potential for accelerating radiative transfer modelling in AGB starts. 
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Physical systems are understood and developed through simulations. The complexity of these 
systems often results in costly and time-consuming simulations. Emulators (surrogate models) can 
approximate the solution of simulations at a fraction of the computational expense. However, 
building effective emulators for scientific simulations typically requires significant machine learning 
(ML) expertise, posing a barrier for domain experts. To overcome this limitation, we present 
AutoEmulate, an open-source Python package that automates the construction of the best emulator 
for a given simulation, employing state-of-the-art advancements in the field. AutoEmulate compares 
and optimises a wide range of emulator models as well as data preprocessing, calibration, and 
analysis methods. It allows the user to integrate their own emulator and benefit from instant 
benchmarking. Furthermore, AutoEmulate provides simulator‑in‑the‑loop integration, allowing 
physical consistency to be maintained and leveraging active‑learning strategies to iteratively improve 
the emulator with physical information. AutoEmulate’s user-friendly interface enables domain 
experts to deploy high-performance emulators with minimal ML expertise, offering a reliable solution 
for simulation-driven exploration across various disciplines. 
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Purpose: Fast and robust reconstruction of accelerated MRI acquisitions is crucial in interventional 
MRI, particularly for parallel imaging, which is still widely used in the clinic. Our approach aims to 
develop a scan-specific and an interpretable physics-driven neural network for the reconstruction of 
accelerated MRI data with reduced noise and improved image quality at higher acceleration rates. 
 
Theory: GRAPPA suffers from a nonlinear noise-induced error in estimating the coefficients for linear 
interpolation. To capture these nonlinear relationships, a deep Koopman autoencoder is used on k-
space neighbourhoods to identify a global nonlinear coordinate transformation of acquired data and 
then interpolate missing targets across all coil channels. 
 
Methods: The Deep Koopman autoencoder consists of an encoder, a linear layer for interpolation 
and a decoder. The encoder and decoder are designed with a nonlinear layer, each consisting of a 
complex-valued fully connected layer with a ModReLU activation function. The network is 
implemented using mean square error loss function on k-space neighbourhoods and target points 
derived the autocalibration signals (ACS), using batch gradient descent algorithm. The approach was 
compared to GRAPPA and RAKI in 281 retrospectively undersampled brain FastMRI datasets, both 
qualitatively and quantitatively using reconstruction metrics evaluated with respect to the ground 
truth fully sampled reconstruction. The effect of varying the number of autocalibration signals, the 
kernel size, and that latent space dimension for the proposed technique was also studied. 
 
Results: The proposed approach showed improved quantitative metrics compared to GRAPPA and 
RAKI. Visually, the method showed higher resilience to noise amplification and improved 
preservation of sharp details. 
 
Conclusion: This work introduces an interpretable neural network for k-space interpolation, enabling 
good reconstruction quality and offering avenues for extensions to enable autoencoder-based scan-
specific denoising, as well as dynamic real-time reconstruction. 
 
Keywords: 
Parallel imaging, accelerated imaging, Koopman Autoencoder, non-linear mapping, k-space 
interpolation, deep learning 
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In this project, we apply recent advancement in using Physics-Informed Neural Networks for chemical 
kinetics and cellulose ageing modelling [1] to model a process of epoxy curing. Curing is a chemical, 
irreversible reaction where polymer chains crosslink to form a rigid, solid material. Curing process 
starts with a viscous resin and ends with a fully cured solid. During the process, the crosslinking 
between polymer chains increases and the degree of cure also increases. The main factor influencing 
the curing process is temperature.  

In this project, we use Kamal PDE to model the change in the degree of cure over time. In this case, 
we use simplified form of the Kamal equation and further plan to extend the model to account for 
more parameters. The figure below shows the schematic of the inverse problem implementation 
using PINNs, where Kamal ODE is integrated in the loss function. 

Figure 1. PINN model for finding parameters of the Kamal equation. 
The resulting model was able to learn the progression of the degree of cure with the resulting 
MSE=0.0121. The results also showed the generalizability of the previous model [1] to other types of 
applications with lesser need for adjustments. The current findings will be further enhanced with 
implementation of more complex version of the Kamal equation. 

[1] Bragone, F., Morozovska, K., Laneryd, T., Shukla, K. and Markidis, S., 2025. Discovering Partially
Known Ordinary Differential Equations: a Case Study on the Chemical Kinetics of Cellulose 
Degradation. arXiv preprint arXiv:2504.03484.
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A Variational approach to Physics Informed Neural Network for Stochastic Partial Differential 
Equations, October 2, 2025, 11:49 - 11:56 

Physics-Informed Neural Networks (PINNs) refer to a deep learning approach to represent the spatial 
and temporal characteristics of a distributed physical phenomenon, such as thermal fields, using 
Neural Networks (NNs). The loss function used to train PINNs relies on a term that penalises any 
violation of the Partial Differential Equation (PDE) that governs the distributed phenomena, in 
addition to a least-squares-error penalisation of any available observations in the relevant domain. 
PINNs have been shown to be successful in approximating the solutions to PDEs and have proven 
effective even in the low data regime. A critical shortcoming is the lack of a systematic treatment of 
the uncertainty of the approximation. State-of-the-art approaches rely on Bayesian NNs, though 
these are computationally heavy, both during training and at inference, nor does the associated 
training procedure derive from first principles. To remedy these limitations, we propose Variational 
Inference PINNs (VI-PINNs).  
Our approach derives from first principles: the uncertainty intrinsic to the distributed phenomena is 
explained by adopting Stochastic PDEs, while relying on standard measurement uncertainty to 
explain the observational uncertainty. This leads to the formulation of a posterior probability for the 
distributed phenomenon. Drawing parallels with Bayesian inference in finite spaces and relying on VI 
techniques to circumvent the otherwise intractable posterior. We derive a training objective that 
allows us to train two NNs, representing the mean and covariance of the approximation, respectively. 
The solution may be interpreted as a Bayesian belief about the true distributed phenomenon. 
Importantly, in the limit, the original PINN framework is recovered. We compare our approach with 
Bayesian PINNs (B-PINNs). Our results suggest that VI-PINNs are easier to implement, have a lower 
training time, and yields results that better align with reality, especially when extrapolating outside 
the measurement range. 
  



 

Transforming physics-informed machine learning to convex optimization 
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Transforming physics-informed machine learning to convex optimization (Online), October 2, 2025, 
11:56 - 12:03 

Physics-Informed Machine Learning (PIML) offers a powerful paradigm of integrating data with 
physical laws to address important problems in engineering, such as parameter estimation, inferring 
hidden physics, equation discovery, and state prediction. However, PIML, such as Physics-Informed 
Neural Networks (PINNs), still lack the necessary accuracy, stability, and interpretability when 
applying in pratical engineering due to many serious optimization challenges including the spectral 
bias, non-convex optimization, multi-objective optimization, and non-smooth optimization. In this 
study, we propose the Convex-PIML based on convex optimization and basis functions widely used in 
well-established numerical solvers to overcome all these limitations. The linear combination of B-
splines is utilized to approximate the data, promoting the convexity of the loss function. By dividing 
variables into blocks and replacing the non-convex loss terms with convex approximations, the 
problem is further converted into a sequence of successively refined approximated convex 
optimization problems. This conversion known as Block Successive Convex Approximation (BSCA) 
allows the use of well-established convex optimization algorithms, obtaining solutions effectively and 
efficiently. Furthermore, an adaptive knot optimization method is introduced to mitigate the spectral 
bias issue of PIML, further improving the performance. The proposed fully adaptive framework by 
combining the adaptive knot optimization and BSCA is tested in scenarios with distinct types of 
physical prior. The results indicate that optimization problems are effectively solved in these 
scenarios, highlighting the potential of the framework for broad applications. Note that the Convex-
PIML is also flexible since many other basis functions can also be incorporated to handle different 
systems. 
  



 

Physics Informed Machine Learning for Astronomy 
Dr Frederik De Ceuster 
 

Keynote, Frederik De Ceuster, Leuven Gravity Institute, KU Leuven – 30 mins + 15 mins for questions, 
October 2, 2025, 13:30 - 14:15 

Astronomy has always been a domain where modelling must be deeply physics-informed. 
Observations often provide only partial or indirect glimpses of the objects we study, and without 
embedding fundamental physics into our methods, inference and prediction would be severely 
underconstrained. In this keynote, I will discuss recent advances in combining machine learning with 
physical modelling to address these challenges. I will highlight three examples: MACE, a machine-
learning emulator for chemical kinetics, which accelerates complex astrochemical simulations while 
maintaining physical consistency; pomme, a physics-informed framework for the 3D reconstruction 
of stellar atmospheres from spectral line observations; and the use of probabilistic numerics in 
astrophysics, specifically in numerical relativity, enabling efficient and quantifiably accurate 
modelling of gravitational-wave sources for next-generation observatories such as the Einstein 
Telescope and LISA. Together, these case studies illustrate how physics-informed ML can both 
respect fundamental laws and unlock new possibilities in astronomical modelling. 
  



 

Deploying CFD-ML Models: From Optimization to Immersive Telepresence 
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Invited Talk on Real-world applications of PEML (30 minutes + 15 mins for question): Carlos Peña 
Monferrer, SimZero, October 2, 2025, 14:15 - 15:00 

Numerical methods such as computational fluid dynamics (CFD) have long been essential for 
modeling complex physical systems in engineering, infrastructure, and environmental science. While 
powerful, their adoption in real-time or interactive applications has traditionally been limited by high 
computational costs. Recent advances in machine learning (ML), particularly those informed by 
physical principles, are beginning to shift this paradigm, enabling applications such as real-time 
intelligent flow control, energy optimization, risk anticipation, and human-in-the-loop decision 
support. 
 
To move beyond research prototypes, these models must be not only accurate but also accessible, 
interoperable, and easy to deploy. In this talk, we present SimZero’s approach to the practical 
exploitation of CFD-ML models, focusing on a modular, cloud-native deployment pipeline. This 
architecture encapsulates trained models behind a standardized API, decoupling simulation, 
inference, and visualization while enabling integration into digital twins, IoT, robotics, web platforms, 
and extended reality (XR) environments. 
 
We present real-world use cases demonstrating the deployment of CFD-ML models in operational 
settings. These applications highlight the system’s ability to support interaction and physics-informed 
decision-making across diverse platforms. This user-centric approach minimizes friction, simplifies 
system complexity, and enables responsive, high-fidelity simulation at the point of need. Ultimately, 
this technology bridges the gap between advanced computational modeling and its real-time use in 
critical applications across domains such as Industry 5.0 and smart cities. 
  



Physics-informed machine learning for galaxy evolution studies 
Dr Payel Das 

Keynote, Payel Das, University of Surrey – 30 mins + 15 mins for questions, October 2, 2025, 15:30 - 
16:15 

One of the central goals of galaxy evolution studies is to determine how galaxies assembled over 
time and how dark matter is distributed within them. One route to this is through the present-day 
distribution of stellar positions and velocities (i.e. the phase-space structure) in nearby galaxies, 
which encodes both their evolutionary histories and underlying dark matter potentials. The 
collisionless Boltzmann equation (CBE) provides the theoretical framework, linking the stellar 
distribution function (DF) to the gravitational potential under the assumption of dynamical 
equilibrium. 

Classical approaches to dynamical modelling often impose restrictive parametric forms for the DF or 
use moment-based methods such as Jeans modelling. Recent work has demonstrated that 
normalizing flows can serve as flexible, non-parametric representations of the DF, enabling more 
detailed descriptions of the phase-space structure of galaxies. However, flexibility alone is 
insufficient: dynamical equilibrium must still be imposed. This has motivated the development of 
physics-informed approaches, in which the learned DF is required to satisfy the CBE or its steady-
state moments, ensuring that the resulting models correspond to true equilibrium solutions. 

I will review these developments, highlighting how they allow us to infer both the DF and the 
gravitational potential. I will also discuss possible future directions, including the use of symplectic 
flows, which preserve Hamiltonian structure by design and may provide a more natural 
representation of equilibrium dynamics. These methods promise to open new opportunities for 
constraining the distribution of dark matter and the dynamical history of galaxies. 



Relativity Wasn't in the Training Set 
Prof, Miles Cranmer  
University Of Cambridge 

Relativity Wasn't in the Training Set, October 1, 2025, 4:15PM-5:00PM 

Machine learning is revolutionizing data analysis in the sciences, yet cannot handle out-of-
distribution prediction. While neural networks excel at interpolation within their training 
domain, including when transformed to cover different distributions in physically reasonable 
ways, they cannot fundamentally extrapolate to novel regimes the way mathematical 
physics can. Think of how preposterous it is that physics could accurately predict black holes 
in 1916 from purely tangential evidence. Modern machine learning is nowhere near making 
such predictions. 

So, what can we do? In this talk, I will present two complementary approaches to infuse 
physics, in a soft way, into machine learning to achieve improved generalization on new 
problems. First, I will discuss symbolic regression, which leverages the compositional 
geometric structure inherent to physical laws. This approach effectively embeds centuries of 
physics knowledge as an inductive bias, but in a remarkably different way than a typical 
machine learning pipeline. Second, I will discuss Polymathic AI and our efforts to build 
foundation models trained on diverse scientific data across disciplines. These approaches, 
despite the massive chasm between the size of models they produce, are actually quite 
similar in how they impose priors on learning. I will highlight the subtleties of this. 



 

EPRSC: unpacking the long term AI for science opportunities  
Daniel Smith1 
1EPSRC-UKRI, Swindon, United Kingdom 
Special Session - Daniel Smith, EPRSC: unpacking the long term AI for science opportunities, October 2, 

2025, 17:00 - 18:00 

Special Session  
 
In this session EPSRC will provide a short overview of the latest UK strategy relating to AI for Science, 
and explore, via a facilitated session, the long term opportunities and how these can be best realised.  
 
Specifically, we will explore what partnerships, capacity building and interventions are required 
within engineering and physical sciences related disciplines such that the UK can fully realise the long 
term benefits, particularly for breakthrough scientific discoveries.  
 
This will both consider those in the community already working in this area and how we may best 
facilitate broader engagement with others.  
 
 
  



 

A perspective on fluid mechanical environments for challenges in 
reinforcement learning 
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A perspective on fluid mechanical environments for challenges in reinforcement learning, October 3, 
2025, 10:00 - 10:07 

We consider the challenge of developing agents that efficiently interact with high-dimensional, 
evolving environments, towards a view of practical reinforcement learning (RL) agents interacting 
with open worlds, of which they witness and affect only a small part. We argue that canonical fluid 
mechanics problems, and their simulations, present a compelling testbed for the development of 
such methods. These problems arise in nonlinear instabilities, where small disturbances can grow to 
transform the dynamics of a system. Nonlinear instabilities represent several open scientific 
challenges with industrial applications -- the droplet breakup of a liquid jet, mixing at an interface 
between two fluids, and the appearance of unusually tall rogue waves in the ocean. In these settings, 
agents may leverage preserved representations across the changing dynamics to learn efficiently. 
 
We present two problem descriptions of agents interacting with a fluid mechanical environment, and 
describe the state and action spaces, and reward functions, for these agents. For these examples, we 
specify the aspects of the environment which are nonstationary and the preserved invariances. We 
note Dedalus and JAX-CFD as open-source simulators that can be used for the development of 
reinforcement learning methods (Burns et al., 2016, Kochov et al., 2021). We demonstrate the use of 
Dedalus for environment generation by creating RL agents that learn to navigate in a stationary 
environment that is simulated using Dedalus. This sets the stage for future development of 
reinforcement learning agents that learn to meaningfully interact with simulated environments that 
represent scientific challenges in the natural world. 
  



 

AI-driven Drifter Placement for Ocean Currents 
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AI-driven Drifter Placement for Ocean Currents, October 3, 2025, 10:07 - 10:14 

We introduce a formal active learning methodology for guiding the placement of Lagrangian 
observers to infer time-dependent vector fields -- a key task in oceanography, marine science, and 
ocean engineering -- using a physics-informed spatio-temporal Gaussian process surrogate model. 
The majority of existing placement campaigns either follow standard `space-filling' designs or 
relatively ad-hoc expert opinions. A key challenge to applying principled active learning in this setting 
is that Lagrangian observers are continuously advected through the vector field and so they make 
measurements at different locations and times. It is, therefore, important to consider the likely 
future trajectories of placed observers to account for the utility of candidate placement locations. To 
this end, we present BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter 
Trajectories. We observe noticeable benefits and robustness to model misspecification of BALLAST-
aided sequential observer placement strategies. 
  



 

Identification of Time-Varying Modal Parameters in Offshore Wind Turbines 
Melisa Bozaci1, Alice Cicirello1 
1University Of Cambridge, Cambridge, United Kingdom 

Identification of Time-Varying Modal Parameters in Offshore Wind Turbines, October 3, 2025, 10:14 - 
10:21 

Offshore wind turbines (OWT) are becoming critical structures to reach net-zero targets and mitigate 
climate change. Nevertheless, they experience extreme environmental and operational conditions, 
which can reduce their life span. Therefore, it is crucial to monitor their health status to assess their 
reliability and performance. In order to monitor OWT, operational modal analysis (OMA)  is 
employed as a vibration-based structural health monitoring method. It uses accelerometer 
measurements to monitor damage-sensitive parameters, namely natural frequency, damping ratio, 
and mode shapes. Natural frequency is often monitored as it is easier to identify compared to 
damping ratio and mode shapes. However, OMA assumes that the OWT is linear time invariant (LTI) 
and the ambient excitation is stationary and broadband. In practice, these assumptions are violated 
as the OWT shows time-varying behaviour due to environmental and operational conditions (EOC), as 
well as degradation; the excitation is nonstationary and narrowband, such as wind and wave loading.  
These violations hinder accurate natural frequency identification under real operating conditions. In 
order to overcome these assumptions, data-driven methods have been explored to monitor natural 
frequencies. Nevertheless, the accuracy of these methods is limited by insufficient and unlabelled 
data, unobserved operational conditions, and lack of physical interpretation. 
To address this challenge, this study proposes a hybrid modal analysis that combines physics and 
domain knowledge with data-driven methods using Long-Short Term Memory (LSTM) network and 
Extended Kalman Filtering (EKF). In this approach, the LSTM network provide the data-driven method 
while EKF introduces physics through the implementation of governing equations. The approach is 
tested using  synthetic data generated from a finite element model of a 2-blade monopile offshore 
wind turbine to explore the blade rotation-induced effects on the offshore wind turbine. However, 
blade rotation introduces significant changes in natural frequencies due to mode veering and 
coalescence which can be a challenge for accurate identification. Therefore,  performance of the 
proposed method is evaluated by comparing its results with a state-of-the-art physics-enhanced 
machine learning approach using the same dataset. 
 
  



 

Multi-fidelity learning for physical system predictions 
Paolo Conti1 
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Multi-fidelity learning for physical system predictions, October 3, 2025, 10:21 - 10:28 

High-fidelity simulations of physical systems are often limited by computational resources, 
significantly restricting the potential of scientific computing. Conversely, low-fidelity data—abundant, 
inexpensive, and fast to compute—are increasingly available, though they exhibit reduced accuracy, 
potential biases, and heterogeneous modalities. Multi-fidelity surrogate modeling aims to leverage 
such low-fidelity data to improve predictive accuracy when high-fidelity data are scarce. However, 
integrating diverse low-fidelity sources remains challenging, especially when they vary in quality and 
bias, or when certain modalities are inconsistently available or too costly to assimilate within budget 
constraints. 
 
We introduce a multi-fidelity transformer architecture that assimilates information from multiple 
low-fidelity sources, merges it via attention mechanisms, and predicts the evolution of complex, 
high-fidelity physical systems. By incorporating physically meaningful low-fidelity signals, the method 
enforces physical consistency, enhancing interpretability and robustness in scientific modeling while 
maintaining the non-intrusive nature of data-driven approaches. 
 
We demonstrate the generality of our method on PDE-based benchmarks, where low-fidelity models 
arise from coarse spatial or temporal discretizations, misspecified physics, or incomplete modality 
availability. We also apply our approach to a real-world climate modeling task predicting sea ice 
levels using data from in situ measurements and satellite observations. Our approach improves 
performance over standard multi-fidelity and purely data-driven bas 
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Optimizing hp-Variational Physics Informed Neural Networks for real-world applications using the 
FastVPINNs framework, October 3, 2025, 10:28 - 10:35 

In this work, we extend the FastVPINNs framework for hp-Variational Physics Informed Neural 
Networks (hp-VPINNs) to real-world applications in computational fluid dynamics and computational 
electromagnetics, and present a new method for training on low-memory edge devices. We present 
the first implementation of hp-VPINNs to model turbulent flows by employing Reynolds-Averaged 
Navier Stokes equations (RANS) as the governing equations. Built upon the FastVPINNs framework, 
which employs variational loss formulations and tensor-based optimization, our approach 
significantly improves computational efficiency while achieving similar solution accuracy. The 
proposed method is validated on two canonical turbulent flow problems: a zero pressure gradient 
(ZPG) boundary layer and an adverse pressure gradient (APG) boundary layer. Additionally, we solve 
an inverse problem of sparse data assimilation for turbulent flow over a periodic hill. For forward 
problems, we compare the accuracies and computational times with those reported in the literature. 
The relative l2 errors for the mean fields and turbulent components are less than 3% and 10%, 
respectively. Additionally, we achieve 1.7x and 1.4x speedups for ZPG and APG problems, 
respectively. In the inverse setting, our method successfully assimilates sparse upstream 
measurements to recover near-wall flow characteristics, highlighting its potential in experimental 
data assimilation for turbulent flows. In the second part of this work, we explore the use of 
FastVPINNs for electromagnetic simulations of permanent magnet moving coil (PMMC) motors. In 
particular, we conduct magnetostatic simulations on different stator-airgap-magnet configurations. 
In each case, we predict the magnetic vector potential and compare it with finite element method 
solutions. Lastly, we present a novel method to extend FastVPINNs for edge deployment by applying 
tensor decomposition methods such as SVD, Tucker, CP, and tensor-train decomposition (TTD) to 
both the network parameters and the test function tensor. These decompositions yield low-rank 
approximations that significantly reduce memory and computation requirements. 
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Physics-Guided Graph Inference for District Heating Networks, October 3, 2025, 10:35 - 10:42 

Many intelligent infrastructure systems rely on sensor networks to monitor and control complex 
physical processes. These sensor networks are naturally modeled as graphs, where nodes represent 
sensors and edges capture relationships between them. Graph-based machine learning methods 
have shown great promise for processing and analyzing such data, enabling tasks like anomaly 
detection, forecasting, and data imputation.  
 
However, the performance of these methods strongly depends on the quality of the underlying graph 
structure. In many real-world scenarios, the true graph topology is unknown, incomplete, or noisy. 
Even when available, the graph may not fully capture the functional dependencies which are critical 
for various downstream tasks. 
 
 
To address these challenges, we propose a novel physics-enhanced graph signal processing (GSP) 
framework that leverages domain knowledge to improve graph inference and signal reconstruction. 
Our method incorporates physical constraints and prior knowledge about the system into the graph 
learning process, resulting in a smooth graph signal representation that guided by the underlying 
physics.  
 
We formulate this approach as a convex optimization problem, efficiently solved using a primal-dual 
algorithm, enabling scalable inference of meaningful graph structures from raw sensor data. We 
validate our method on a case study of district heating networks, where sensor data are corrupted by 
noise and missing values. Results show that our approach improves graph inference quality and 
signal recovery compared to previous graph learning techniques, highlighting the benefit of 
integrating domain knowledge. 
 
This physics-informed GSP approach bridges the gap between data-driven methods and physical 
system understanding, opening new avenues for interpretable and reliable graph- based learning in 
intelligent infrastructure systems. 
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HypeMARL: Multi-agent reinforcement learning for high-dimensional, parametric, and distributed 
systems, October 3, 2025, 10:42 - 10:49 

Deep reinforcement learning has recently emerged as a promising feedback control strategy for 
complex dynamical systems governed by partial differential equations (PDEs). When dealing with 
distributed, high-dimensional problems in state and control variables, multi-agent reinforcement 
learning (MARL) has been proposed as a scalable approach for breaking the curse of dimensionality. 
In particular, through decentralized training and execution, multiple agents cooperate to steer the 
system towards a target configuration, relying solely on local state and reward information. However, 
the principle of locality may become a limiting factor whenever a collective, nonlocal behavior of the 
agents is crucial to maximize the reward function, as typically happens in PDE-constrained 
optimization problems. In this work, we propose HypeMARL: a decentralized MARL algorithm 
tailored to the control of high-dimensional, parametric, and distributed systems. HypeMARL employs 
hypernetworks to effectively parametrize the agents’ policies and value functions with respect to the 
system parameters and the agents’ relative positions, encoded by sinusoidal positional encoding. 
Through the application on challenging control problems, such as density and flow control, we show 
that HypeMARL (i) can effectively control systems through a collective behavior of the agents, 
outperforming state-of-the-art decentralized MARL, (ii) can efficiently deal with parametric 
dependencies, (iii) requires minimal hyperparameter tuning and (iv) can reduce the amount of 
expensive 
environment interactions thanks to its model-based extension, MB-HypeMARL, which relies on 
computationally efficient deep learning-based surrogate models approximating the dynamics locally, 
with minimal deterioration of the policy performance. 
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Neural Operators for Accelerating Flow Field Predictions, October 3, 2025, 11:21 - 11:28 

Scientific machine learning uses machine learning (ML) to analyse and understand the behaviour of 
dynamical systems, often described by ordinary and partial differential equations (ODEs and PDEs). 
These modern ML methods can then be used to provide fast approximations for all possible system’s 
states. Previous research in approximating highly complex and nonlinear functions has shown that 
these models are able to capture a wide range of behaviours, especially in areas where the physical 
phenomena, such as nonlinearity and turbulence, are not fully understood. However, these 
techniques have primarily focused on using neural networks (NNs) to learn mappings between finite-
dimensional vector spaces. However, these functions exist within continuous and infinite-
dimensional domains.   
 
In this research, we investigate the use of neural operators (NOs), which are designed to learn 
mappings between infinite-dimensional spaces. We use a popular NO architecture, the deep 
operator network (DeepONet), to solve the unsteady Reynolds-averaged Navier-Stokes (URANS) 
equations in turbomachinery applications. The aerodynamics in these systems are highly complex, 
three-dimensional, and unsteady due to the relative rotation of the components and can vary from 
subsonic to transonic along the span of a single blade. The flow is also turbulent, displaying large and 
small-scale vortices that must be resolved. Due to the time-dependent nature of the URANS 
equations, we investigate extensions with recurrent neural networks (RNNs) to better capture the 
temporal evolution of our systems.   
 
We focus on predicting the flow properties for an entire steady-state vibration cycle within an empty 
duct. The outlet of the duct is subjected to a sinusoidally varying unsteady pressure wave at a fixed 
amplitude and at varying frequencies, representing multiple different operating conditions. These 
simulations are used for training our augmented NO, where the first vibration cycle of an unsteady 
simulation is used to map to the last vibration cycle. Our NO learns a mapping from transient to 
steady conditions. Learning this mapping reduces the computational expense of running an 
expensive CFD simulation with thousands of time steps to only the first 100, as we only use this 
portion to predict the last 100 steps – which can then be used for other aeroelastic analyses, such as 
flutter.  
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A Surrogate Modelling Framework for the Correction of Structural Bias in SatelliteCloud Property 
Retrievals, October 3, 2025, 11:28 - 11:35 

Satellite-based cloud property retrievals are an important component of climate science, though 
their efficiency often relies on simplified physical assumptions that introduce structural bias into the 
data products. A key source of this bias is the assumption of a globally fixed value for the effective 
variance of the cloud droplet size distribution (veff), a simplification which introduces systematic 
errors into derived parameters such as Liquid Water Path (LWP) and Cloud Droplet Number 
Concentration(Nd). This study addresses this deficiency by developing a post-processing correction 
framework based on surrogate modelling. The biased operational algorithm is treated as a "physics-
deficient" base model, for which a surrogate is developed to predict its residual error. To construct 
this surrogate, a dataset is generated from numerous high-fidelity radiative transfer simulations, 
characterising the retrieval bias across a wide parameter space. This dataset is then used to build the 
error corrector: a classical surrogate model implemented as a multi-dimensional lookup table . 
Application of the surrogate correction framework reduces the mean bias in LWP and Nd by over 
90%, improving the accuracy of the retrieved products. The outcome demonstrates how classical 
data-driven techniques, when conceptualised as surrogate models, can correct for known structural 
deficiencies in physical algorithms. The study establishes a methodology that can guide future work 
where the framework could be advanced through the use of more sophisticated machine learning 
emulators. 
  



 

Deep reinforcement learning for wall-bounded turbulent flows via wall 
measurements 
Giorgio Maria Cavallazzi1, Alfredo Pinelli1 
1City St. George's, University Of London, , United Kingdom 

Deep reinforcement learning for wall-bounded turbulent flows via wall measurements, October 3, 
2025, 11:35 - 11:42 

In the field of Deep Reinforcement Learning (DRL) for the control of turbulent wall-bounded flows, it 
is a common practice to use measurements of the velocity field, u(x,t), from locations far from the 
wall as input for the agent. This approach has led to significant successes, such as active suction and 
blowing strategies that, when guided by a DRL agent, have demonstrated drag reduction of up to 
40%. The policy of such an agent, π, can be represented as a function that maps the observed state 
to a control action: a_t = π(u|y+ =15,t). However, the practical implementation of such control 
systems is hindered by the difficulty of obtaining these far-field velocity measurements non-
intrusively, in real-time. To overcome this limitation, we propose a novel approach that leverages 
Generative Adversarial Networks (GANs) to act as a virtual sensor. The GAN, represented by a 
generator function G, is trained to infer the instantaneous velocity field far from the wall, u|y+ =15, 
by using more available, non-intrusive measurements of wall pressure, p_w , and wall-shear stress, 
τ_w ,as its input. Specifically, we aim to learn a mapping G: {p_w ,τ_w } → u|y+ =15, such that u|y+ 
=15 can serve as a suitable state for the DRL agent. This study investigates the feasibility of this 
methodology 
and quantifies the tolerance for uncertainty in the inferred velocity fields, u|y+ =15 to achieve a DRL 
policy with a satisfactory level of performance. Our work thus aims to bridge the gap between 
effective but impractical control strategies and their real-world application, paving the way for more 
robust and deployable DRL-based flow control systems. 
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Design Optimisation of Locally Resonant Metamaterials under Uncertainty, October 3, 2025, 11:42 - 
11:49 

The past decade has witnessed a growing focus on vibro-acoustic metamaterials for noise absorption 
and vibration mitigation. This is possible thanks to their frequency bandgap properties, which can be 
tuned by design engineers based on the specific application of the material. This behaviour is 
exhibited alongside with low specific mass and makes their use particularly desirable in a wide range 
of applications, including buildings noise insulation and acoustic liners for jet engines. 
 
In recent years, research has pivoted around the maximisation of the bandgap frequencies targeted 
by metamaterials, with the intent of enlarging the region of attenuation for better performance over 
traditional materials. The majority of design optimisation techniques for metamaterials rely 
exclusively on physics-based models and the results are then used to identify some configurations to 
be tested experimentally. However, these optimisation frameworks do not take into account 
uncertainties that arise in manufacturing, mounting and experimental data collection. Modelling 
these uncertainties at the digital design step is an ongoing challenge. 
As a consequence, discrepancies between the models results and the experimental results arise. This 
makes experimental tests essential for identifying a true optimal design.  
Since it is not feasible to experimentally test all the possible metamaterials configurations to identify 
the true optimal design, a combination of measurements and models is necessary. State-of-the-art 
machine learning based optimisation techniques cannot handle noisy data acquired from 
experimental tests as inputs. 
 
This work focuses on highlighting the challenges in the development of a hybrid physics-data method 
for iterative design optimisation that actively guides the selection of a limited number of 
experiments, with focus on locally resonant metamaterials.  
A benchmark case study is investigated both experimentally and numerically. Quantification of 
different sources of uncertainties is discussed. Finally, possible solutions for experimental data 
handling in design optimisation iterations are discussed.  
  



 

Physics-enhanced Simulation-Based Inference: Likelihood-free MCMC via 
Normalizing Flows and Variational Autoencoders 
Giacomo Bottacini1, Matteo Torzoni2, Andrea Manzoni1 
1MOX - Department of Mathematics, Politecnico di Milano, , Italy, 2Department of Civil and 
Environmental Engineering, Politecnico di Milano, , Italy 

Physics-enhanced Simulation-Based Inference: Likelihood-free MCMC via Normalizing Flows and 
Variational Autoencoders, October 3, 2025, 11:49 - 11:56 

We present a new methodology for solving inverse problems in a variational framework exploiting 
neural networks that not only yields predictive results, but also provides uncertainty quantification. 
We employ a Differential Evolution Metropolis sampling method introducing a Normalizing Flow 
structure, specifically using Real-valued Non-Volume Preserving transformations (RealNVP), to 
approximate the likelihood function when dealing with complex physics-driven problems. 
Observational data are processed by a Variational Autoencoder to reduce  the dimensionality of the 
input to be handled by the RealNVP and to extract the most relevant features for parameter 
estimation. To further enhance the informativeness of the latent space, a supervised loss term allows 
the latent space to be more structured and informative for the downstream inference task. The 
proposed methodology is validated on two case studies: a conductivity estimation problem for a 
steady-state groundwater flow governed by Darcy’s law and damage estimation for a railway bridge 
structure. 
 
  



 

Reduced order modeling with shallow recurrent decoder networks 
Matteo Tomasetto1, Jan Williams2, Andrea Manzoni1, J. Nathan Kutz2 
1Politecnico Di Milano, , Italy, 2University of Washington, , USA 

Reduced order modeling with shallow recurrent decoder networks, October 3, 2025, 11:56 - 12:03 

Reduced Order Modeling is of paramount importance for efficiently inferring high-dimensional 
spatio-temporal fields in parametric contexts. However, conventional techniques are typically data-
hungry, limited to known and constant parameters, and inefficient for nonlinear and chaotic 
dynamics. In this work, we exploit SHallow REcurrent Decoder networks to build Reduced Order 
Models (SHRED-ROM) capable of reconstructing high-dimensional state dynamics in multiple 
scenarios from the temporal history of limited sensor measurements. Through applications on 
chaotic and nonlinear fluid dynamics, we show that the proposed technique is a robust decoding-
only strategies, capable of dealing with both fixed or mobile sensors, physical and geometrical 
(possibly time-dependent) parametric dependencies and different data sources, while being agnostic 
to sensor placement and parameter values. 
  



 

AI for emulation, forecasting and extremes in weather and climate 
Simon Driscoll1 
1University Of Cambridge, Cambridge, United Kingdom 

Keynote, Simon Driscoll, University of Cambridge – 30 mins + 15 mins for questions, October 3, 2025, 
13:30 - 14:15 

Whilst machine learning and AI are not entirely new in weather and climate research, recent years 
have seen a rapid increase in their use - aided by advances in ML techniques, GPUs and so on. 
 
Ranging from emulators of subgrid-scale processes to fully data-driven models, AI is now ubiquitous. 
Success in weather forecasting has even seen the adoption of AI forecasting models by operational 
centres. Yet there remain questions around their physical behaviour that are also crucial for building 
trustworthiness. The importance of the physical consistency and soundness of these models is also 
integral when considering longer term climate emulation and hybrid modelling approaches. 
 
Here we discuss AI models in this context, ranging from forecasting abilities to our research probing 
their underlying physics and behaviour. We furthermore show how emulators of subgrid-scale 
processes can be made from model observations as well as synthetic data. Here obeying physics is 
particularly important in the case of where these emulators might be used in context of future 
climate projections. We discuss the role of observations for physically sound emulators (particularly 
in the cryosphere) and other research.  
 
Applications of AI centre not only around the physical soundness of emulators and forecasting 
models but also for use around African meteorology and extremes which we briefly discuss. 
  



 

Generative-AI to support Preliminary Engineering Design 
Dr Shiva Babu1, Marco Nunez1, Yashwanth Gurbani1, Nima  Ameri1 
1Rolls-royce, Bristol, United Kingdom 
Real-world applications of PEML (30 minutes + 15 mins for question), Shiva Babu, Rolls-Royce, October 

3, 2025, 14:15 - 15:00 

From literature, there is evidence suggesting that conditional Generative Adversarial Networks 
(cGAN) can provide a valuable means to support engineering design by accurately predicting the 
results of computationally expensive simulations and their underpinning physics mechanisms 
through the encoding of design information into 2D images. However, there is a need for further 
work to identify and address some of the roadblocks hindering a wider application of this technology. 
The first part of this presentation summarises recent developments in the investigation conducted to 
understand and address restrictions identified for the use of cGAN models on different preliminary 
design engineering use cases. Key considerations are also drawn, with regards to key tasks conducted 
as part of the pre-processing of training data. A summary of developments in the adoption of cGAN 
models for 3D use cases is subsequently presented, along with the techniques under investigation 
with the aim of providing more freedom and flexibility to the creation and manipulation of 
engineering geometries. Preliminary results outline the possibility of generative design capabilities 
through the provision of suggested design concepts based on a single model containing both a 
geometrical representation of the system under study, in conjunction with the information of its 
performance against design metrics of interest (e.g., stress field, flow field, displacements, 
temperatures, etc.). A key advantage from such approach is that it allows training the neural network 
model with legacy simulation data to then offer a semi-instant prediction for the performance 
associated with synthetically generated design candidates. 
  



 

Scientific Machine Learning for Extreme Events Prediction in Turbulence 
Anh Khoa Doan1 
1Delft University Of Technology, Delft, Netherlands 

Keynote, Anh Khoa Doan, TU Delft, Faculty of Aerospace Engineering – 30 mins + 15 mins for 
questions, October 3, 2025, 15:30 - 16:15 

Extreme events appear in many fluids mechanical systems, such as in atmospheric flows, 
oceanography, or wind turbines. These extreme events are sudden, unsteady, transient large 
nonlinear deviation of the flow away from its mean state. All these events are generally accompanied 
by detrimental and potentially catastrophic consequences. Therefore, the ability to predict such 
events is of the utmost importance. However, such a task is extremely challenging because of the 
underlying complex chaotic dynamics, the high dimensionality of flows and the relatively rare 
occurrence of extreme events in any dataset.  
In this talk, we will present our recent developments in scientific machine learning techniques to 
support the prediction of such extreme events. Specifically, we will tackle three different aspects. 
First, we will present a combined dimensionality reduction/clustering approach to identify pathway 
to extreme events in chaotic systems. Second, we will discuss a reduced-order modelling approach, 
based on convolutional autoencoder and echo state network, that can learn the dynamics of flow 
with extreme events. Finally, some aspects related to the possibility of using machine learning-based 
control will be discussed. 
  



 

Neural operators: a framework for scalable scientific computing 
Dr Jean Kossaifi 
 

Invited Talk on Real-world applications of PEML (30 minutes + 15 mins for question): Jean Kossaifi, 
NVIDIA, October 3, 2025, 16:15 - 17:00 

Traditional deep learning typically involves learning mappings between finite-dimensional vector 
spaces. Real-world applications such as weather forecasting and aerodynamics, by contrast, involve 
modeling complex spatiotemporal processes governed by partial differential equations (PDEs) 
defined on continuous domains and at multiple scales. In other words, they involve learning 
mappings between infinite-dimensional function spaces. 
 
Neural operators enable this by generalizing deep learning to learn mappings directly between 
function spaces, while offering substantial speed improvements over traditional PDE solvers, often 
several orders of magnitude faster. In this talk, I will introduce the fundamental concepts behind 
neural operators, illustrate their effectiveness on practical problems such as weather forecasting. 
Finally, I will touch on computational efficiency and practical implementation aspects in Python, 
demonstrating how these concepts can be applied in practice using open-source software. 
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