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INTRODUCTION BA DATA B MODEL

The 3D kinematics of Coronal Mass Ejec-

tions (CME) is crucial for modeling its Coronagraph images contain projected
propagation. information on the CME structure.
Current Time of Arrival (ToA) estimates Multiple viewpoints  provide comple-
suffer from persistent errors and under- mentary information.

dispersion. The reconstruction is based on the outer
We present a method for reconstructing outline of the CME (blue lines) which can
CMEs from coronagraph data. be measured in coronagraph images.
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n Bayesian inference, priors convey The posterior contains all the informa-
Knowledge about model parameters be- fion about the model parameters after
fore considering the data. considering the data.

They can informative (e.g. half-width, a 't is a N-dimensional probability distribu-
narrow gaussian) or uninformative (e.g. tion (N = number of model parameters).
atitude/Lat. with a flat prior). 't can be projected to 1D or 2D to visu-
Priors  allow  Incorporating  physical alize marginal distributions and correla-
<nowledge of the system (e.g. use tions.

distribution of CME speeds as prior).
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An assumption on the 3D CME geome-
try Is required.
We use the full ice-cream cone model
11].

The 3D geometry is projected and the
outer outline extracted analytically.
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Our Bayesian framework provides a ro-
bust method for the 3D reconstruction
of CMEs from coronagraph data.

It allows the characterization of model
parameter uncertainties rigorously, re-
gardless of the availability of multiple
viewpoints.

Posterior distributions can be directly
sampled to propagate uncertainties and
correlations into propagation models.

FUTURE WORK: Apply the framework to a
arge sample of CMEs and use the derived
posterior distributions to drive ensembles
of propagation models (e.e. HUXt). Inves-
figate whether rigorous uncertainty quan-
fification and correlations can improve dis-
tributions of arrival times.

https.//www julhcam.com UK Space Weather Week

ucapern@ucl.ac.uk


https://www.julhcam.com
mailto:ucapern@ucl.ac.uk

