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EISCAT-3D location for a 30-day interval. NO changes linked to geomagnetic activity but lagged with height.
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* Scandi WACCM-RR: regionally refined over Scandinavia (see Nitric Oxide vmr 186 Production of ions:
Figure 1) for limited duration simulations to look at cross-scale Figure 4: Daytime only electron density and nitric oxide mixing ratio for same "
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e WACCM-D: WACCM with a complete D-region ion chemistry \ /
scheme (See Figure 2).
e Solar cycle variations Forcing from the lower atmosphere
~ WACCM-D simulations show a factor of 3 variation over the solar  Gravity wave (GW) signatures seen in electron density
cycle that follows solar UV variability (as indicated by f10.7). and NO that are again highly correlated.
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» * A broad spectrum of GWs are resolved in the WACCM-
e w0 RR at 1/8° that originate in the troposphere.
. * These variations will be resolved with EISCAT-3D.
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