

Absorber Modeling of Pilot Plant Results with Aqueous Piperazine

PCCC4 Sep 6, 2017

Yue Zhang, The University of Texas at AustinEric Chen, The University of Texas at AustinGary Rochelle, The University of Texas at Austin

Outline

- Introduction
- Modeling Activities
- Preliminary Data Reconciliation Results
- Conclusions

Outline

Introduction

- Modeling Activities
- Preliminary Data Reconciliation Results
- Conclusions

5 m Piperazine with the Advanced Flash Stripper (AFS)

April 2017 Pilot plant campaigns

UT-SRP pilot plant in Austin, TX

- 20% CO₂ for parallel membrane-amine process
- 3.5% CO₂ for NGCC conditions
- 12% CO₂ for coal conditions
- April 2017, 4 weeks
- 0.2 MW

Packing Characterization

Packing Measurements conducted independently in pilot columns: a_e, k_g, k_l

Pilot plant runs reflect real packing performance with all underlying factors

Objective

Improve the existing packing model by pilot plant absorber data reconciliation

Absorber Modeling Activities

- Test plan development to maximize value of data
- Accurate simulation of test conditions before the campaign
- Design of experiments using simulation results
- Data reconciliation and model validation

Data Modeled by Independence

- Rate-based Absorber model developed in Aspen Plus
 - PZ Thermodynamics by e-NRTL
 - PZ Kinetics regressed from WWC
- Solvent 5 m PZ: fast absorption rate, low viscosity, good energy performance
- Packing parameters from Song and Wang
- Absorber Rating model: interfacial area factor = 0.6

Absorber Test Plan

- 4 weeks (4.5 day/wk),
 - 29 factorial runs
 - (including 18 of 20 recommended by preliminary DoE)
- 30 ft absorber packing or 20 ft + 10 ft water wash
- 350, 600 cfm
- 3.5, 12, 20% CO₂
- 0.18 0.27 lean ldg, 0.32 0.40 rich ldg

Outline

- Introduction
- Modeling Activities
- Preliminary Data Reconciliation Results
- Conclusions

Data Reconciliation: Loading & CO₂ balance

Redundant measures of rich and lean loading do not agree

- Immediate titration of manual samples at the pilot plant
 - $_{\odot}$ Alkalinity & total $\rm CO_2$
- Laboratory analysis by TIC after the campaign
- On-line Density (total CO₂)
 - $\odot\,$ Regression provided by bench-scale, ldg by TIC
 - $\,\circ\,$ Calibrated to match pilot plant titration

Material balance for total CO₂ removed

- L * Δ loading, by all measures of loading
- Stripper Overhead CO₂
- G * (y_{in} y_{out})

On-line, precise, Density to predict loadings

$$\rho_{PZ} = \rho_{H20} \cdot (0.0407 \cdot C_{C02} + 0.008 \cdot C_{PZ} + 0.991)$$

$$\frac{\rho_{Pilot}}{\rho_{PZ}} = \frac{\rho_{InhA}}{\rho_{H_20}} = 0.00741 * Inhibitor(wt\%) + 1.0018$$

Where:

 ρ = liquid density (kg/m³), measured online $C_{CO2} = CO_2$ concentration in the solution (mol/kg) $C_{PZ} = PZ$ concentration (mol/kg) $\rho_{H2O} = f(T)$

Density works reasonably well for Rich Loading

Titration RLDG (mol CO₂/mol alk)

Reconciliation of 4 Redundant Lean Loading Measurements

Density/Titration

14

Outliers identified by CO₂ material balance

Systematic bias is not dependent on inlet CO₂ Basis to correct inlet CO₂ or select correct lean loading

Predicted NTU/Measured NTU

17

Predicted NTU/Measured NTU

Conclusions

- Perform careful data reconciliation to
 - Select inlet CO₂ analyzer
 - Or correct inlet CO₂
 - Select loadings
- Rely more on on-line density to provide loadings

Future Data Reconciliation Approach

- 1. <u>A data consistency check</u>: material balance check
- 2. <u>Gross error detection</u>: identify the variables that require statistically larger changes
- 3. <u>Data reconciliation with parameter adjustment</u>: if the model cannot be reconciled within the measured uncertainty, adjustable parameters will be added

For more information

Yue Zhang, Ph.D. Candidate, University of Texas at Austin

yuezhang1992@utexas.edu

Gary T. Rochelle, Professor, University of Texas at Austin

gtr@che.utexas.edu