

OUTLINE

Energy Efficient Carbon Capture with Proven Solvent Technology

- **▶** Introduction
 - Client, study scope
 - Technology
 - Method
- ▶ Heat integration options
- Study results
- **▶** Conclusions

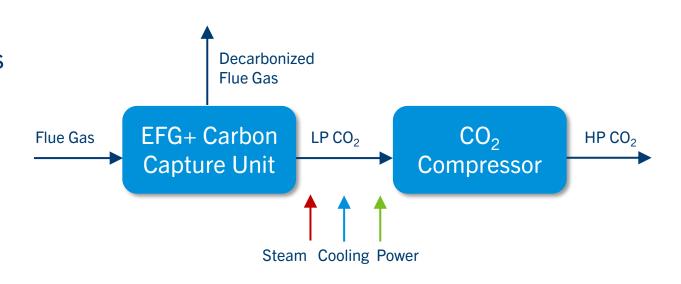
© 2025 Fluor. AM2501766-001

INTRODUCTION

Client & Project

- Client is a leading Waste to Energy company
 - Incinerates household waste
 - Delivers steam & power to surrounding industries
 - Delivers heat to city district heating, around 80-100°C
- ▶ Targets CO₂ neutral operation across their operations
 - Power **Turbine** Flue Decarbonized Gas Steam Flue Gas Household Carbon CO_2 Combustion . Flue Gas Stack Waste Waste Capture **Processing** Chamber **Cleaning Plant** Cooling Re-use Ash District Ash Material Heating

- ▶ Fluor scope
 - Pre-FEED for a Carbon Capture plant, based on
 - Fluor's Econamine FG PlusSM
 Carbon Capture Technology
 - Approx 500 kta CO₂ capture


2025 Fluor. AM2501766-001

INTRODUCTION

Technology and Method

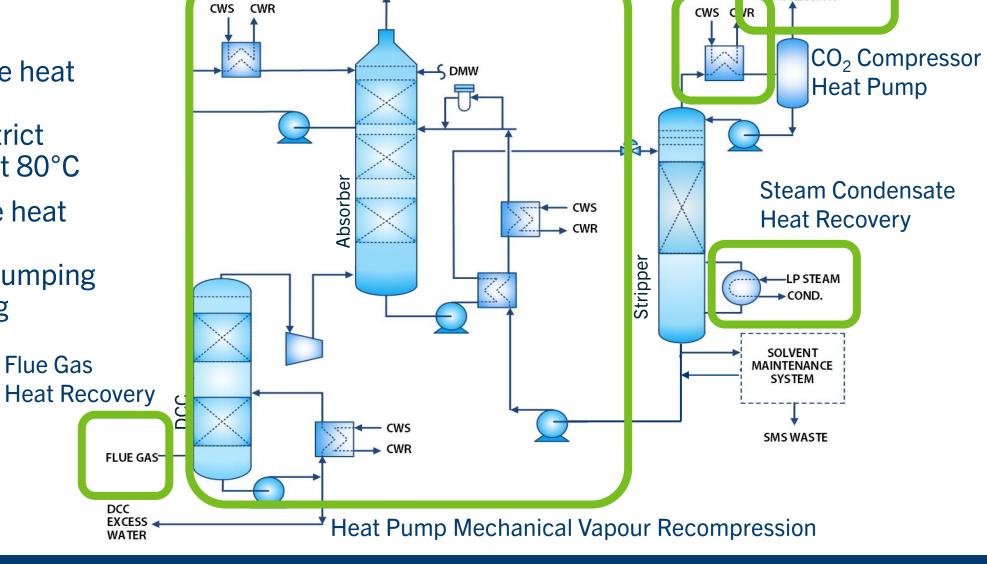
- ▶ Fluor's Econamine FG PlusSM technology
- Low pressure, solvent-based carbon capture
- ▶ Consumes steam, electricity and cooling water
- Study to reduce energy consumption
 - Listing of individual heat integration options
 - Assessment of OPEX and CAPEX
 - Evaluation & ranking of options

FLUOR

Stripper Overhead

CO₂ TO

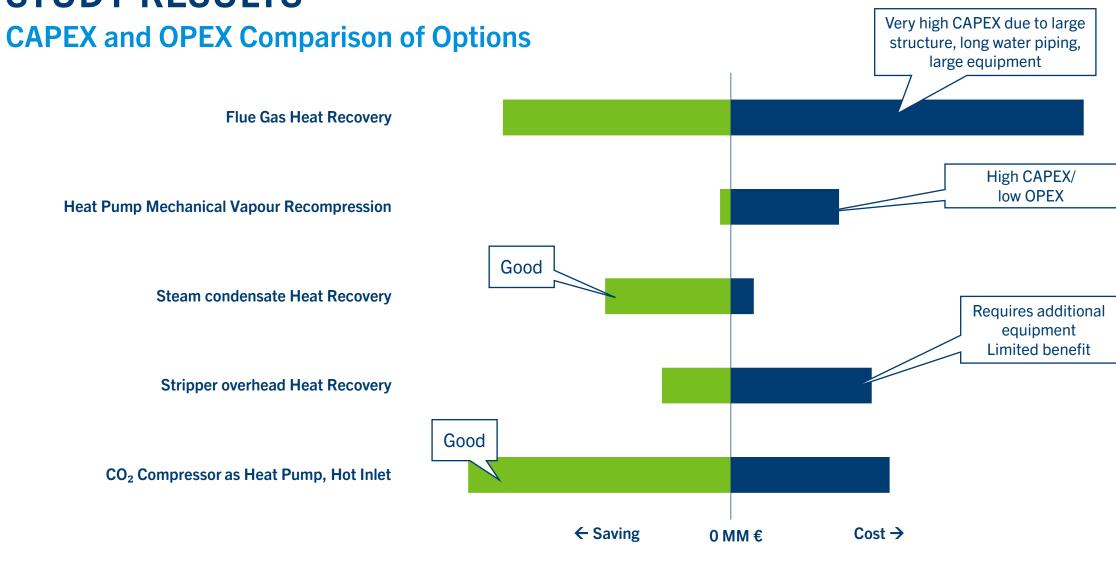
MPRESSION


Heat Recovery

ECONAMINE FG PLUS

Heat Integration Options

- ▶ High temperature heat sources
 - → directly to district heating system at 80°C
- **Low** temperature heat sources
 - → require heat pumping to district heating


Flue Gas

TREATED GAS

STUDY RESULTS

OPEX

CAPEX

STUDY RESULTS

Traditional Heat Pumps

Coefficient of Performance (COP)

$$COP_{heat\ pump} = \frac{Output\ Energy}{Input\ Energy} = \frac{Heat\ Out\ (MW)}{Electricity\ In\ (MW)}$$

Heat pump economic viability:

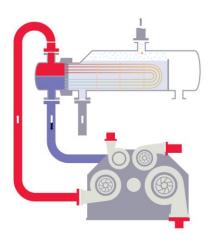
$$Viability\ ratio = \frac{value\ of\ electricity\ (\frac{\textbf{E}}{MWh})}{value\ of\ heat\ (\frac{\textbf{E}}{MWh})} < COP_{heat\ pump}$$

- ▶ High temperature lift for this project, resulting in low COP, too close to the viability ratio
 - → Traditional heat pumps are not viable in this case

However.....

STUDY RESULTS

CO₂ Compressor as Heat Pump


- ► Four stage CO₂ compressor produces significant amount of heat in intercoolers
- When intercooled with hot water
 - Lower efficiency, but
 - Ability to transfer heat to district heating

$$COP = \frac{Heat\ recovery}{Delta\ compressor\ power} > 10$$

- ▶ Machine cost ~ +20%
- Several vendors offer CO₂ compressors with stage inlet temperatures up to 200°C

MAN Energy Solutions is supplying the compressor system, for the carbon capture and storage (CCS) system at the Norcem Brevik cement plant of Heidelberg Materials in Norway

https://www.man-es.com/process-industry/solutions/carbon-captury-with-waste-heat-recovery#(Everllence)

https://www.siemens-energy.com/global/en/home/products-services/product/integrally-geared-centrifugal-compressors.html

CONCLUSIONS

Carbon Capture Heat Integration

- ▶ Heat recovery from CO₂ compressor and reboiler steam condensate
 - Most promising for this project
- ▶ Heat recovery from incoming flue gas
 - Second best due to high investment
- ▶ Net energy consumption reduced by approximately 60%
- Ratio between monetary value of power and heat important for heat pump viability
- → Heat integration can improve CO₂ Capture plant energy consumption significantly
 → due to local district heating

© 2025 Fluor. AM2501766-001

WHAT IS NEXT?

Carbon Capture Heat Integration

- ▶ Fluor is preparing for next project phase
 - FEED and EPC
- Scope facilities includes
 - CO₂ compressor heat recovery
 - Steam condensate heat recovery
 - Flue gas heat recovery (marked as future scope)

© 2025 Fluor. AM2501766-001

THANK YOU

QUESTIONS

LinkedIn

linkedin.com/company/fluor

@FluorCorp

YouTube

www.youtube.com/user/FluorCorporation

Sander Balkenende Principal Process/Specialty Engineer sander.balkenende@fluor.com