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Introduction

/Global Warming Trends:
* Significant rise in global average surface temperature.
* Increased frequency of extreme weather events.
Consequences of Climate Change:
* Severe impacts on agriculture, biodiversity, and human health.
 Economic losses and social disruption.
Need for Action:
* Importance of reducing carbon emissions.

* Urgent need for sustainable solutions to mitigate climate change effects.

» Development of innovative technologies for CO, capture and utilization.
()]
ConsenCUS The critical need for innovative CO, capture technologies
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CO, Capture

Treated gas

/+ Potential of absorption in alkaline solutions E—
coupled with electrochemical regeneration —
as a solution.

* A sorbent with high absorption capacity and el L
less volatility and toxicity. Anode( JJ w . i Cathode )
_ _ B .2 E Sodll- |
* KOH reacts with CO, to form potassium . e [ = )

carbonate/bicarbonate solution
(K,CO,4/KHCO,).

* An electrochemically-driven pH swing to
desorb CO, and regenerate the solvent.

Electrochemical cell

Rich solvent Feed gas

* There Is no an available model to simulate
the process.
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Focus Areas

/Absorber Modelling:

e Simulation of the absorber unit.

as containing no CO,

* Key aspects: gas flow rates, solvent flow rates, and

Pure CO,
Absorption I
capture efficiency.

tower ho —
OH'Q/\DH+ ? OH'A H*

* Importance: Optimizing these parameters to achieve high
CO, capture efficiency.

* Electrochemical Cell (E-Cell) Modelling: ' I I

Anode (+)
Acidic
Alkaline

Cathode (-)

BMED unit
* Role of E-Cell in the CO, desorption process during

solvent regeneration.

Gas containing CO,

* Factors: Current density, resistive heating, and bubble

formation.
(.)

ConsenCUS Integration of electrochemical regeneration into ASPEN Plus enables
comprehensive modelling of CO, capture processes.
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Absorber Simulation

/ D Name Reactions
. . . . -
Aspen Plus is used for the simulation cOD CARBON.DIOXIDE 1 2H,0,5y <> H30q) + OHgq)
* Chemical species present in the process N NITROGER 2 | COzaq) + OHggq) = HCO3(aq)
WATER WATER
* Vapour-Liquid Equilibria (VLE) KOH POTASSIUM-HYDROXIDE | | 3 HCO3qq) = COzaq) + OHlaq)
K2CO3 POTASSIUM-CARBONATE
vip; P = x;y{ H, y CO2(aq) +2H200)
HCO3 POTASSIUM- N HBO(aq) + HCO3(aq)
* Experimental data from literature BICARBONATE T
. . H3O+ H3O+ 3% (aq) + 3(aq)
containing K,CO,/CO,/H,0O -~ -~ > > COyaq) + 2H,0(
* Thermodynamic model: Electrolyte OR- OR- . HCO34qy + H20q
NRTL 005 005 O * 0%
. . 7 KOH < K* + OH™
* The ionic reactions 100 - - - —
_— _ i« — 8 KyCO3 > 2K* + €057
* Modifications made to equilibrium = S -
_ L > S 9 KHCO, < K* + HCO,
reactions and kinetics based on /‘“f ST 343.15K
@ s  ESTHAGK |
&b Hrevious work. s +EXP 30315 |
Consencus’ & oorl// e EXPESAGK
© 1 EST 403.15K 1 Figure- C0, partial pressure of K,C03-C0,-H,0 (equivalent
0.001 =X 403.15K concentration of K,C0,=30%), experimental data from Tosh et al.

0 0.2 0.4 0.6 0.8 1 [1].

— CDE Loading (mol CDEImDI I{ECDS} _
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Electrochemical Cell (Electrolyser) Simulation

-~

ASPEN Custom Modeller (ACM) is applied.

Cco,
| ean carbon solution

BPM

Main assumptions made in this work:

Cathode (-)
e
o

* The proton generation is assumed to occur directly from
water and not from hydrogen.

* All species are assumed at equilibrium state.

* Only CO, desorption considered due to the negligible
solubility of H, and other potentially dissolved gases. Rich carbon solution

()]
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The electrochemical cell model incorporates multiple phenomena
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Electrochemical Cell (Electrolyser) Simulation

- Tco,

Nernst-Planck equations for the flux (mol s m-2) describe
the movement of ions across the membrane: ' + n
]C\\\H Fouts [Ct]out: [K ]out
dfye+ do N
e = TR < ax fK+&> h /
]H"' = —aDcy (%4— fH"' i—f) =
Ll
. . . . A
* Total current density must satisfy the ionic current density ! N
through the CEM: S
jo =Ug++ Jg+) F W K'I'\"\
* Mass conservation equation over the membrane is v -
1 . Fir, [Celing, [K T )iy * Jeo, || €O, production rate
Jer = 5 (Ci% = ) [ c .
CoAe T « [ —| : Current density
* [nclusion of temperature dependence on Henry’'s Law, > .
resistive heating across BPMED chamber, and bubble * Aplm®]:Membrane area
formation in the model. * N:Number of unit cells
C
e F [ _] : Faraday constant
mol e
Phadd  7n;:Current ef ficiency
ConsenCUS * «a:carbonloading

Integration of electrochemical regeneration into Aspen Plus involves
complex thermodynamics and kinetics.
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Key performance indicators

-~

+ Key Performance Indicators (KPIs) are essential for
evaluating the effectiveness and efficiency of CO,
capture processes.

» Capture efficiency, specific energy consumption, and

CO, production rate (/) are crucial KPIs.

» Capture efficiency

Yco,,in — Yco,,out

Nco, capture (%) =

Yco,,in
» Specific Energy Consumption
V. A
& SEC = to;al]c a
ConsenCUS o

These KPI’s can be evaluated by experimental results.
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Key performance indicators

-~

* | oad Ratio:
_ jcA
LK+ - Cr+-Q.F

* The K+ load ratio (Ly,) is a dimensionless parameter that describes the ratio between

the potential transport of K* at a given current density and the amount of K* fed into the
system.

* In principle, when L,,= 1, the current in the cell is sufficient to transport all the
potassium toward the cathode.

(( )
)

ConsenCUS _ _ _
Rigorous modelling enables evaluation of CO, capture process performance.
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Validation of the CO2 capture process

-

0.006 -

1000

1000

50 -
0
* Validation of the = - 900 - 900
_ = 0.005-
electrochemical e 800 _ __ 40- 800 __
. . X : 9 t
regeneration model against g 0.004- -700 § g 700 §
xperimental - > .. >,
experimenta _E 0.003 . | 600 E :30 - 600 E
measurements. v ¢ w @
> © LI T
g o] 500 4w n 500 4w
(@ c T) c
& 0.002 - o g 20” :
8N 400 5 < 400 5
_ g 0.001 - 300 300
* Alignment between model 0
. . . = 200 200
predictions and experimental  o.000-{ | | | | | | | |
d t f CO d t 0.000 0.002 0.004 0.006 10 20 30 40 50
ata 1or o Proauction. Experimental CO;, production rate (kmol/m?2s) Experimental SEEC (M)/kgco,)

()]

ConsenCUS Optimal process conditions are essential for the best CO, capture KPIs.
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Pilot Simulation

-~

o _ component parameter value/range
* The specifications
absorber column type packed-bed
for the pilot model packed height 9 m
diameter 0.6 m
packing type Pall ring
packing diameter 15.875 mm
packing void fraction 0.9
packing specific surface area 300 m?/m?
solvent aqueous KOH
electrochemical cell configuration bipolar membrane electrodialysis
membrane type BPM-CEM
membrane (CEM) area 44 cm X 44 cm
number of stacks 2
number of cell per stack 126
fixed charge density (a) 2
membrane thickness (&) 48 X 107" m
@ potassium diftusivity 1.96 X 1077 m?*/s
Con‘s::CUS proton diffusivity 9.31 X 107" m?*/s
anode (cathode) thickness (d) 025 X 107" m
current density 10—150 mA/cm?
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Results and Discussion

-

3.5% CO, in flue gas, 200 kg/h flow rate,
varying L/G ratios

« L/G Ratio & Efficiency ,

‘2.')|| 1 1 =25 ||||I
|||:a!|’ ||”|—|1.£I-__ |||ll‘ﬂ_!,|, |||I|—|1.£I-_

I
N "2\}
Higher L/G (2-5) increases CO, capture (UPH'T.IN | N re.
to 100% at L/G = 5) but raises energy use. - IH % T m 1'5
I 191 o DS

« SEEC vs. Current Density Teos

SEEC grows with current density and L/G; o -

higher L/G demands more energy for -

regeneration.
 Optimal Load Ratios

Minimum energy at load ratios: 0.86 (L/G = -, e 1o 00 0- 00 800 0w 80w 0

2) 0.83 (L/G — 3) 0.84 (L/G — 5) ~Ourprduataonrtded (kg rearrehNoenshey {4Ana

, U. , U. - A, ,5553“4(1;@’] 'I o VG2 kafa, W, liGs2haka,

« CO, Capture Limits
Lower L/G (e.g., 2) limits capture to ~60%
due to solvent loading constraints.

®
)

ConsenCUS .. . . : : : :
Achieving efficient CO, desorption requires strategic operational adjustments.
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Results and Discussion

/COZ content in flue gas, varying rich solvent loading

raising SEEC.

« Case Study Performance
Cement achieves highest loading (0.78) with
minimal SEEC due to strong CO,, driving force;
Magnesite and CHP show higher SEEC at lower
loadings (0.5-0.67).

 Optimal K+ Load Ratios
LK+ of 0.8-0.9 balances CO, production and
ohmic resistance, minimizing energy use; LK+
>1.0 increases resistance, reducing CO, output.

] 20V - - L - — |
and L/G ratios I @ “Chp N | . X Il\I ':f’
+ Rich Solvent Loading & SEEC | -7 W Tmagnesite | i - A e
Lower L/G ratios increase rich solvent loading o ' ll‘ cement 1, ‘:'.‘.- - - N )
(e.g., 0.58 for CHP, SEEC 3.5 MJ/kg), reducing  ~fe"Em g N
energy for regeneration; higher L/G dilutes CO,, ‘.- a, H o _A_

Minima.l ines _ |
|| ==+ Min SEEC (CHP) . |
2.5 _H o ) o
I l——- Min SEEC (Maanesite) |
le-n“NmTSEECTCewth |

N 0 V| | | | |

* lonic Congestion Effects
At LK+ >1.0, H+ flux dominates, causing ionic
@ crowding, higher ohmic losses, and wasted heat,

- Increasing energy demands.
ConsenCUS

ul eadinnd -

~d.1 0.2 0.3

Optimal K+ load ratio range for the best performance.
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Results and Discussion

6ptima| LK+ = 0.8-0.9, varying L/G ratios and current
densities

« CHP Performance (3.5% CO,)
Low CO, content leads to lower CO, production rates and
higher SEEC, especially at higher L/G ratios.

 Magnesite Performance (9.1% CO.,)
Moderate CO, content balances capture efficiency and
production rates, with better performance at lower L/G
ratios.

« Cement Performance (13.5% CO,)
High CO, content yields highest CO, production and

Capture rate (%)

capture efficiency with lowest SEEC, optimizing energy 1

« CO, Content Impact

Higher flue gas CO, concentrations enhance overall

-~ electrochemical cell performance at optimal LK+ (0.8—-0.9).

)
ConsenCUS

100+

80

60

40

20 -

L/G ratio (kg/kg)

- 600

- 500

~- 400

300

200

100

10 —
8 - 600
~ 87
E @ - 500
<. .8
23 67 H A 400
2= '
BY ol 4
cuw “1 m A 300
“t’ A
5
O 27 200
0+ T | 100
0 2 a4
L/G ratio (kg/kg)
[‘ CHP A Cement [J] Magnesite

Performance at fixed medium current for efficient CO, capture and desorption.
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Results and Discussion

@xed current density of 400 A/m?, varying L/G and load
ratios

L/G = 2.7 (load ratio 0.8—0.9) minimizes SEEC (<5
MJ/kg for Cement) and maximizes CO, production
(20 kg/h for Magnesite, 23 kg/h for Cement).

* Operational Tuning

-~ Balancing L/G and load ratios optimizes energy costs

and throughput, even with suboptimal capture

Consencgﬁiciency.

30 25
+ CHP Capture Efficiency e : IA“TU | @ IAIT AIJ (c) A IA[T
Achieves near 100% capture at high L/G ratios (4.[] , ;"J"’| 0 | ||| |, . > |O ” ||| L1_5£2§J | Al | |||
but with higher SEEC (7 MJ/kg at L/G = 2.7) | EI . s s L01 . ] ||| | W W ] |I| | -‘%_:EL51 : ; m A
« Magnesite & Cement Performance " ”ﬁ” - g 5 LH ® . ”‘km E's‘gly | © © ”'kl'o Eg’ggllﬂ S
Lower capture efficiency (<40% at high L/G, ~20% e M~ & _| m : | ':J's"“°1 2 _apg._|N 0_'5'3 | -
low L/G), with Cement showing better energy |l|o'5 ’"l“|o T Il| ' |51 A 8 z 4 |l| y éJ'F v
efficiency. . m_ e m_ . E_
. Optimal L/G Ratio ° - L/G2 ratio (k;/kg-) ° L/é ratio (k;/kg-) ° - L/é ratio (k;/kg-)
@ ciP A Cement M Maanesite

Optimal operational conditions are crucial for efficient CO, capture and desorption.
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Results and Discussion

ﬁoltage & Power: Model vs. Pilot Data

limited mixing.
®

)
ConsenCUS
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o L+ < 0.7 o Lr+ = 0.9 L+t =1 L+ =14
o Mabs recycde = 3600 kg/h A Tabs recycle = S00kg/h

LK+ =1.0 Performance 60 400

Pilot data (orange) aligns near 200 V and 40 kW, — -

reflecting efficient ion transport with low membrane E ol % 3001 :

resistance. = o 20

o % ﬁo 2001 ,‘.

* LK+ =1.4 Deviations A ¢ = &

Pink data (LK+ = 1.4) shows nonlinear voltage/power § 201 .‘ E 100} A

Increases due to ohmic losses and pH gradient A A"' A

overpotentials. 0L - - 0k -

20 40 60 0 200 400

« Conductivity Stability Model Power kW] Model Voltage |V]

Pilot maintains 6—8 S/m conductivity vs. model's 5-35

S/m, attributed to uniform KOH replenishment and
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Results and Discussion

K Capture Efficiency

Model predicts ~100% efficiency at LK+ — o Lp <07 ® L =009 Lo =1 L — 1.4
1.0; pilot data (orange) matches up to ®  Tiabsrecycle = 3600kg/h A TR recyele = 800kg/h
600 A/m? but drops at higher currents =8 — 0 — 100
L oD O
due to mixing issues. =1 O 40 ¢ 30|
2 O =

- SEC Discrepancies E é 0l L s S

Model SEC at LK+ = 1.0 is ~7 GJ/tonne §, 3 |, : |
- : o O — 20+ = 40
CO,; pilot data (orange) rises to 20 3 c 1 2 £ < S 3
2 0
TR O 10} 20 |
GJ/tonne, reflecting incomplete pH - (Y = o
swings. = ol i . ~ gl ol .
0 2 4 6 8 0 10 20 30 40 50 0 50 100

 Desorption Limitations Model CO, regenerated [kg/h] Model SEC [GJ/tonne COs] Model e [%)]
Pilot acidic compartment pH (6—7) vs.
model pH (3-5) reflects incomplete CO,
desorption, driven by uneven current and
mass transfer issues.

®
)
ConsenCUS
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Summary

Integrated absorption-electrochemical regeneration model

 Model Development & Validation
Built in Aspen Plus and Custom Modeler, validated with good CO, production agreement at low
currents (15 mA/cm?), but deviates at higher currents due to unmodeled mass transport and simplified
equilibria.

 L/G Ratio Trade-offs
Higher L/G ratios (2-5) increase capture rates (60-100%) but raise SEEC by up to 300%:; higher flue
gas CO, (3.5-13.5%) lowers energy demands.

« Optimal K+ Loading
LK+ = 0.8-0.9 optimizes CO, production and minimizes ohmic losses; LK+ > 1.0 increases resistance,
reducing efficiency.

* Industrial Case Studies
CHP achieves ~100% capture (60 MJ/kg), while Cement prioritizes throughput (7 kg/h, 10 MJ/kQ);
tailored parameter optimization is critical.
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