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Introduction

Global Warming Trends:

• Significant rise in global average surface temperature.

• Increased frequency of extreme weather events.

Consequences of Climate Change:

• Severe impacts on agriculture, biodiversity, and human health.

• Economic losses and social disruption.

Need for Action:

• Importance of reducing carbon emissions.

• Urgent need for sustainable solutions to mitigate climate change effects.

• Development of innovative technologies for CO2 capture and utilization.
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The critical need for innovative CO2 capture technologies



CO2 Capture

• Potential of absorption in alkaline solutions 
coupled with electrochemical regeneration 
as a solution.

• A sorbent with high absorption capacity and 
less volatility and toxicity.

• KOH reacts with CO2 to form potassium 
carbonate/bicarbonate solution 
(K2CO3/KHCO3).

• An electrochemically-driven pH swing to 
desorb CO2 and regenerate the solvent.

• There is no an available model to simulate 
the process.
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Focus Areas

Absorber Modelling:
• Simulation of the absorber unit.

• Key aspects: gas flow rates, solvent flow rates, and 
capture efficiency.

• Importance: Optimizing these parameters to achieve high 
CO2 capture efficiency.

• Electrochemical Cell (E-Cell) Modelling:
• Role of E-Cell in the CO2 desorption process during 

solvent regeneration.

• Factors: Current density, resistive heating, and bubble 
formation.

Integration of electrochemical regeneration into ASPEN Plus enables 
comprehensive modelling of CO2 capture processes.
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Absorber Simulation

• Aspen Plus is used for the simulation

• Chemical species present in the process

• Vapour-Liquid Equilibria (VLE)
𝑦𝑦𝑖𝑖𝜑𝜑𝑖𝑖𝑣𝑣𝑃𝑃 = 𝑥𝑥𝑖𝑖𝛾𝛾𝑖𝑖∗𝐻𝐻𝑖𝑖

• Experimental data from literature 
containing K2CO3/CO2/H2O 

• Thermodynamic model: Electrolyte 
NRTL 

• The ionic reactions 

• Modifications made to equilibrium 
reactions and kinetics based on 
previous work.

ID Name
CO2 CARBON-DIOXIDE
N2 NITROGEN

WATER WATER
KOH POTASSIUM-HYDROXIDE

K2CO3 POTASSIUM-CARBONATE

KHCO3
POTASSIUM-

BICARBONATE
H3O+ H3O+

K+ K+
OH- OH-

HCO3- HCO3-
CO3-- CO3--

Figure- 𝐶𝐶𝑂𝑂2 partial pressure of 𝐾𝐾2𝐶𝐶𝑂𝑂3-𝐶𝐶𝑂𝑂2-𝐻𝐻2𝑂𝑂 (equivalent 
concentration of 𝐾𝐾2𝐶𝐶𝑂𝑂3=30%), experimental data from Tosh et al. 
[1]. 

Reactions

1 2𝐻𝐻2𝑂𝑂(𝑙𝑙) 𝐻𝐻3𝑂𝑂(𝑎𝑎𝑎𝑎)
+ + 𝑂𝑂𝐻𝐻(𝑎𝑎𝑎𝑎)

−

2 𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎) + 𝑂𝑂𝐻𝐻(𝑎𝑎𝑎𝑎)
− → 𝐻𝐻𝐻𝐻𝑂𝑂3(𝑎𝑎𝑎𝑎)

−

3 𝐻𝐻𝐻𝐻𝑂𝑂3(𝑎𝑎𝑎𝑎)
− → 𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎) + 𝑂𝑂𝐻𝐻(𝑎𝑎𝑎𝑎)

−

4
𝐶𝐶𝑂𝑂2 𝑎𝑎𝑎𝑎 + 2𝐻𝐻2𝑂𝑂 𝑙𝑙
→ 𝐻𝐻3𝑂𝑂 𝑎𝑎𝑎𝑎

+ + 𝐻𝐻𝐻𝐻𝑂𝑂3 𝑎𝑎𝑎𝑎
−

5
𝐻𝐻3𝑂𝑂 𝑎𝑎𝑎𝑎

+ + 𝐻𝐻𝐻𝐻𝑂𝑂3 𝑎𝑎𝑎𝑎
−

→ 𝐶𝐶𝑂𝑂2 𝑎𝑎𝑎𝑎 + 2𝐻𝐻2𝑂𝑂 𝑙𝑙

6
𝐻𝐻𝐻𝐻𝑂𝑂3(𝑎𝑎𝑎𝑎)

− + 𝐻𝐻2𝑂𝑂(𝑙𝑙)

𝐶𝐶𝑂𝑂3(𝑎𝑎𝑎𝑎)
2− + 𝐻𝐻3𝑂𝑂(𝑎𝑎𝑎𝑎)

+

7 KOH K+ + OH−

8 K2CO3 2K+ + CO3
2−

9 KHCO3 K+ + HCO3
−



Electrochemical Cell (Electrolyser) Simulation

ASPEN Custom Modeller (ACM) is applied.

Main assumptions made in this work: 

• The proton generation is assumed to occur directly from 
water and not from hydrogen. 

• All species are assumed at equilibrium state.

• Only CO2 desorption considered due to the negligible 
solubility of H2 and other potentially dissolved gases.

The electrochemical cell model incorporates multiple phenomena  



Electrochemical Cell (Electrolyser) Simulation

• Nernst-Planck equations for the flux (mol s-1 m-2) describe 
the movement of ions across the membrane:

JK+ = −D cx
dfK+
dx

+ fK+
dΦ
dx

JH+ = −a D cx
dfH+

dx
+ fH+

dΦ
dx

• Total current density must satisfy the ionic current density 
through the CEM:

jc = JK+ + JH+ F

• Mass conservation equation over the membrane is

JK+ =
Q
A

CK+
in − CK+

• Inclusion of temperature dependence on Henry’s Law, 
resistive heating across BPMED chamber, and bubble 
formation in the model.

Integration of electrochemical regeneration into Aspen Plus involves 
complex thermodynamics and kinetics.

• 𝐽𝐽𝐶𝐶𝐶𝐶2
𝒎𝒎𝒎𝒎𝒎𝒎
𝒔𝒔

: CO2 production rate

• 𝑖𝑖 𝐶𝐶
𝑠𝑠 𝑚𝑚2 :𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• 𝐴𝐴𝑚𝑚 𝑚𝑚2 :𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
• 𝑁𝑁:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠
• 𝐹𝐹 𝐶𝐶

𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒−
:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• 𝜂𝜂𝑖𝑖:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
• 𝛼𝛼 ∶ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙



Key performance indicators

• Key Performance Indicators (KPIs) are essential for 
evaluating the effectiveness and efficiency of CO2

capture processes.

• Capture efficiency, specific energy consumption, and 

CO2 production rate ( ̇𝐽𝐽𝐶𝐶𝐶𝐶2) are crucial KPIs.

• Capture efficiency

𝜂𝜂𝐶𝐶𝐶𝐶2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(%) =
𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖 − 𝑦𝑦𝐶𝐶𝐶𝐶2,𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖

• Specific Energy Consumption

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑐𝑐𝐴𝐴𝑎𝑎

𝐽𝐽𝐶𝐶𝐶𝐶2

These KPI’s can be evaluated by experimental results.



• Load Ratio: 

𝐿𝐿𝐾𝐾+ = 𝑗𝑗𝐶𝐶.𝐴𝐴
𝐶𝐶𝐾𝐾+ .𝑄𝑄.𝐹𝐹

• The K+ load ratio (LK+) is a dimensionless parameter that describes the ratio between 
the potential transport of K+ at a given current density and the amount of K+ fed into the 
system. 

• In principle, when LK+= 1, the current in the cell is sufficient to transport all the 
potassium toward the cathode.

9

Key performance indicators

Rigorous modelling enables evaluation of CO2 capture process performance.



Validation of the CO2 capture process

• Validation of the 
electrochemical 
regeneration model against 
experimental 
measurements.

• Alignment between model 
predictions and experimental 
data for CO2 production.

Optimal process conditions are essential for the best CO2 capture KPIs.
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Pilot Simulation

• The specifications 
for the pilot model



Results and Discussion

3.5% CO₂ in flue gas, 200 kg/h flow rate, 
varying L/G ratios

• L/G Ratio & Efficiency
Higher L/G (2–5) increases CO₂ capture (up 
to 100% at L/G = 5) but raises energy use.

• SEEC vs. Current Density
SEEC grows with current density and L/G; 
higher L/G demands more energy for 
regeneration.

• Optimal Load Ratios
Minimum energy at load ratios: 0.86 (L/G = 
2), 0.83 (L/G = 3), 0.84 (L/G = 5).

• CO₂ Capture Limits
Lower L/G (e.g., 2) limits capture to ~60% 
due to solvent loading constraints.
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Achieving efficient CO2 desorption requires strategic operational adjustments.



Results and Discussion

13
Optimal K+ load ratio range for the best performance.

CO₂ content in flue gas, varying rich solvent loading 
and L/G ratios

• Rich Solvent Loading & SEEC
Lower L/G ratios increase rich solvent loading 
(e.g., 0.58 for CHP, SEEC 3.5 MJ/kg), reducing 
energy for regeneration; higher L/G dilutes CO₂, 
raising SEEC.

• Case Study Performance
Cement achieves highest loading (0.78) with 
minimal SEEC due to strong CO₂ driving force; 
Magnesite and CHP show higher SEEC at lower 
loadings (0.5–0.67).

• Optimal K+ Load Ratios
LK+ of 0.8–0.9 balances CO₂ production and 
ohmic resistance, minimizing energy use; LK+ 
>1.0 increases resistance, reducing CO₂ output.

• Ionic Congestion Effects
At LK+ >1.0, H+ flux dominates, causing ionic 
crowding, higher ohmic losses, and wasted heat, 
increasing energy demands.



Results and Discussion
Optimal LK+ = 0.8–0.9, varying L/G ratios and current 
densities

• CHP Performance (3.5% CO₂)
Low CO₂ content leads to lower CO₂ production rates and 
higher SEEC, especially at higher L/G ratios.

• Magnesite Performance (9.1% CO₂)
Moderate CO₂ content balances capture efficiency and 
production rates, with better performance at lower L/G 
ratios.

• Cement Performance (13.5% CO₂)
High CO₂ content yields highest CO₂ production and 
capture efficiency with lowest SEEC, optimizing energy use.

• CO₂ Content Impact
Higher flue gas CO₂ concentrations enhance overall 
electrochemical cell performance at optimal LK+ (0.8–0.9).

14
Performance at  fixed medium current for efficient CO2 capture and desorption.



Results and Discussion
Fixed current density of 400 A/m², varying L/G and load 
ratios

• CHP Capture Efficiency
Achieves near 100% capture at high L/G ratios (4.0), 
but with higher SEEC (7 MJ/kg at L/G ≈ 2.7).

• Magnesite & Cement Performance
Lower capture efficiency (<40% at high L/G, ~20% at 
low L/G), with Cement showing better energy 
efficiency.

• Optimal L/G Ratio
L/G ≈ 2.7 (load ratio 0.8–0.9) minimizes SEEC (<5 
MJ/kg for Cement) and maximizes CO₂ production 
(20 kg/h for Magnesite, 23 kg/h for Cement).

• Operational Tuning
Balancing L/G and load ratios optimizes energy costs 
and throughput, even with suboptimal capture 
efficiency.

15
Optimal operational conditions are crucial for efficient CO2 capture and desorption.



Results and Discussion
Voltage & Power: Model vs. Pilot Data

• LK+ = 1.0 Performance
Pilot data (orange) aligns near 200 V and 40 kW, 
reflecting efficient ion transport with low membrane 
resistance.

• LK+ = 1.4 Deviations
Pink data (LK+ = 1.4) shows nonlinear voltage/power 
increases due to ohmic losses and pH gradient 
overpotentials.

• Conductivity Stability
Pilot maintains 6–8 S/m conductivity vs. model’s 5–35 
S/m, attributed to uniform KOH replenishment and 
limited mixing.
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Results and Discussion
• Capture Efficiency

Model predicts ~100% efficiency at LK+ = 
1.0; pilot data (orange) matches up to 
600 A/m² but drops at higher currents 
due to mixing issues.

• SEC Discrepancies
Model SEC at LK+ = 1.0 is ~7 GJ/tonne 
CO₂; pilot data (orange) rises to 20 
GJ/tonne, reflecting incomplete pH 
swings.

• Desorption Limitations
Pilot  acidic compartment pH (6–7) vs. 
model pH (3–5) reflects incomplete CO₂
desorption, driven by uneven current and 
mass transfer issues.
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Summary

Integrated absorption-electrochemical regeneration model
• Model Development & Validation

Built in Aspen Plus and Custom Modeler, validated with good CO₂ production agreement at low 
currents (15 mA/cm²), but deviates at higher currents due to unmodeled mass transport and simplified 
equilibria.

• L/G Ratio Trade-offs
Higher L/G ratios (2–5) increase capture rates (60–100%) but raise SEEC by up to 300%; higher flue 
gas CO₂ (3.5–13.5%) lowers energy demands.

• Optimal K+ Loading
LK+ = 0.8–0.9 optimizes CO₂ production and minimizes ohmic losses; LK+ > 1.0 increases resistance, 
reducing efficiency.

• Industrial Case Studies
CHP achieves ~100% capture (60 MJ/kg), while Cement prioritizes throughput (7 kg/h, 10 MJ/kg); 
tailored parameter optimization is critical.
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