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Context & Background

Net zero by 2050 is only an interim target

The end goal is net-negative, with the magnitude of GHG removal yet to

be determined

Capturing (as close as possible to) all CO, from fossil fuel use

" jnitially creates ‘space’ for harder-to-abate sectors in the 2030-2040s

= displaces the deployment of more expensive GHG removal
technology in the 2040s and beyond

The long-term direction of travel for any CO, capture technology is

100% capture, all the time.

Current tranche of (UK) CCS projects — 95% capture, but...




wy GOV-UK https://www.gov.uk/guidance/post-combustion-carbon-

dioxide-capture-best-available-techniques-bat

Home > Environment > Climate change and energy > Energy efficiency

Guidance

Post-combustion carbon dioxide
capture: emerging techniques

Emerging techniques on how to prevent or minimise the
environmental impacts of post-combustion carbon dioxide

capture.
3. PCC plant design and operation
From: Environment Agency 3.1Purpose
Published 2 July 2021
Last updated 27 March 2024 — See all updates The purpose of the PCC plant is to maximise the capture of CO5 emissions for

either use or secure geological storage.

You should aim to design your plant to achieve a CO, capture rate of at least

95% during normal operating conditions, although operationally this can
vary, up or down.




Department for https://assets.publishing.service.gov.uk/media/6373993e8fa8f

Business, Energy 559604a0b8b/ccus-dispatchable-power-agreement-business-
& Industrial Strategy model-summary.pdf

Carbon Capture, Usage and
Storage

Dispatchable Power Agreement business
model summary

The Availability Payment is calculated for each AP Billing Period with the following formula:

AP = Z(AGi x| AC; X NDC|x APR;) + TSCC + TSNC

Definition o If capture rate were to increase by 1%, and
o Net power output were to decrease by less than
AC; Availability of Capture applicable to 1%, then
SeflampatUnith ) o Payment for a gas CCS power plant would

increase under the DPA UK business model

NDC Net Dependable Capacity (MW) . . .
o Incentive to increase capture rates operatlonallv




Post-combustion capture for net zero targets

o The focus today is on Combined Cycle Gas Turbine (similar principles
apply for other applications)

o Three principles for net zero
1. Use best practices for minimising lifecycle GHG emissions of gas supply

Zero residual CO, emissions (i.e. all of it, all the time):
2. 100% capture of fuel CO,
3. Eliminate start up and shut down emissions in flexible gas power plants
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Cownden, R., Lucquiaud, M. (2024) Assessing best practices in natural gas production and emerging CO, capture techniques to
minimise the carbon footprint of electricity generation, under review



Life cycle Greenhouse Gas Emissions of gas CCS electricity
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Cownden, R., Lucquiaud, M. (2024) Assessing best practices in natural gas production and emerging CO, capture techniques to
minimise the carbon footprint of electricity generation, under review



What we need to do next?

o Develop and implement a strong policy framework to drive best
practices in natural gas supply chain

o Efforts to achieve ultra-high capture/deep removal applications are
otherwise meaningless



Post-combustion capture for net zero targets

o The focus today is on Combined Cycle Gas Turbine (similar principles
apply for other applications)

o Three principles
1. Use best practices for minimising lifecycle GHG emissions of gas supply

Zero residual CO, emissions (i.e. all of it, all the time):
2. 100% capture of fuel CO,
3. Eliminate start up and shut down emissions in flexible gas power plants



Caveat

o All results presented hereafter are a 35%wt MEA solvent, open-art
technology

o Carbon accounting at ultra high capture rates:
= Atmospheric CO, entering combustion & capture process is discounted
= 100% capture of ‘added CO,’ from
- fuel (fossil or biogenic)
- process emissions (e.g. limestone)

100% net capture of added CO, -> CCGT: ~99.2% gross absorber capture rate
EfW: ~99.7%
SMR: ~99.7%
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FCDO CLEEN Project:
COGENT - Capture Operation with Greater
Economy for Net-zero Targets | é‘;:ﬁ;;;:;;"“

QD QK—China CFDUS Centre
University of Sheffield/UKCCSRC @UKCCS

Guangdong Carbon Capture Test Platform
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Achievements for COGENT project

/97-99% capture achieved in a large 50 tonne CO,/day capture plant\
with low additional energy requirements

* New desorber optimization method shown to be entirely suitable for
industrial use

* Absorber optimization through precise capture liquid flow control also
demonstrated, but would be facilitated by adding direct loading
measurements

* Immediate impact in supporting 95% capture targets for new UK CCS
projects

* Excellent working relationships established, with plans for further work



What we need to do next?

o Demonstrate extended controlled operation at close to 100% capture
for > several 100s of hrs

o Demonstrate ultra-high capture on CCGT CO, flue gas concentration



Table 6

Plant performance for 100% fossil CO, capture, 96% fossil CO- capture and a no

CO- capture case.

Parameter Unit 100% fossil 96% fossil No CO»
CO» capture CO; capture Capture
Scope 1 specific gC0-e/ 0.0 15.1 320.5
Fossil CO, Capture % 100 95.8 0 ]
fraction
Gross CO; Capture % 99.16 95 0
fraction
Net Output MW, 587.5 593.0 663.3
Natural Gas v, MWhy,/s 0.319 0.319 0.319
Thermal Efficiency % 56.7 57.2 64.0
(LHV)
Specific Reboiler GJ/tCO> 3.67 3.52 -
Duty
CO- Export kg/s 59.0 56.6 -
CO- Stack Emissions  kg/s 0.5 3.0 59.5
*Flue Gas Flow Rate  kg/s 792 792 792
CO, Concentration Mole Frac 4.9 4.9 4.9
Absorbers - 2 2
Packing Stages - 3 2
Packing Height m 24 20
Diameter m 11.4 11.3
Absorber Flooding % <80 <80
Lean Loading mol COz/ 0.10 0.10
mol MEA
[ Rich Loading mol CO»/ 0.44 0.46 |
| mol MEA )
720G lrm a4 [AM2A
Reboiler Temp % 136 136

100% CO2 capture: design and
operation on CCGT

Mullen & Lucquiaud (2024): On the cost of zero carbon electricity: A
techno-economic analysis of combined cycle gas turbines with post-
combustion CO2 capture, Energy Reports 11 (2024) 5104-5124,
https://doi.org/10.1016/j.egyr.2024.04.067



What is the additional cost of 100% CO, capture on CCGT (UK)?
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Additional solvent consumption from 100% capture operation

o low lean leading— 0.1 mol/mol vs 0.2 mol/mol at 95% capture

o Increased exposure to oxygen: 24m packing height vs 20m at 95%

o Higher desorber pressure - 2.7 bara vs 1.5 bara at 95%

o Higher reboiler temperature — 1352C vs 1152C at 95% Model limitations
o Additional MEA consumption: 23-138% Oxidative and thermal degradation only

No HSS or other degradation products
No interaction between degradation compounds

Additional degradation at 100% capture for a CCGT No data on emissions to air and waste
NB - Baseline is not representative

application & capture rates, * indicates the use of intercooling
CCGT: 100/100*/95/95* /95 EfW: 100*/95/95* SMR: 100*/95/95*
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Mullen, D., Braakhuis, L. Knuutila, H.K., Gibbins, J., Lucquiaud, M. (2024) Monoethanolamine Degradation Rates in Post-combustion CO, Capture Plants with the Capture of 100% of the
Added CO, Industrial & Engineering Chemistry Research 63 (31), 13677-13691, DOI: 10.1021/acs.iecr.4c01525



Continuous two-stage thermal reclaiming for 100% capture operation
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Figure 3. Process flow diagram of the thermal reclaiming configurations. Vapour from the 1%
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Michailos, S., Lucquiaud, M., Benz, A., Mullen, D., Elliott, W., Gibbins, J. (2025) A Performance Modeling Study for Zero Fossil CO, Stack Operation and Solvent
Thermal Reclaiming in Post-Combustion Capture Industrial Applications, Ind. Eng. Chem. Res., 2025, https://doi.org/10.1021/acs.iecr.4c04530




Continuous two-stage thermal reclaiming for 100% capture operation

Table 3. Summary of the thermal reclaiming results

Reclaiming 135°C 140°C 145°C
temperature

HEEDA MEA HEEDA MEA recovery HEEDA MEA

recovery (%) recovery recovery (%) (%) Recovery recovery (%)
(%) (%)

Water added* | 1-stage reclaiming
100% 1.84 26.12 5.30 52.92 14.21 76.8
150% 2.85 36.39 9.23 67.49 24.73 86.27
200% 413 46.12 14.68 17.17 35.33 90.89
300% 777 63.11 27.94 88.37 52.42 94.97
400% 13.17 75.58 40.52 92.78 63.78 96.67
Water added* | 2-stage reclaiming
0% 11.39 76.07 15.25 80.66 23.34 87.43
10% 11.71 76.87 15.94 81.95 24.88 88.99
20% 12.01 77.62 16.66 83.19 26.51 90.41
30% 12.30 78.33 17.41 84.38 28.22 91.68
40% 12.59 79.02 18.19 85.51 30.01 92.81
50% 12.87 79.69 19.02 86.60 31.86 93.81
*water added in the 1* reclaimer as a percentage of the reclaimer input mass flowrate. For the 2-stage
configuration a fixed amount of water, equal to 30% of the reclaimer feed, is added in all cases.

Trade-off between

HEEDA (degradation products) recovery
MEA recovery

Water consumption

Energy requirements

Michailos, S., et al. (2025)
https://doi.org/10.1021/acs.iecr.4c04530




Electricity output penalty of thermal reclaiming is

B, 2-stage reclaiming
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Figure 13. The %increase of the equivalent electricity lost, due to thermal solvent reclaiming, from
the electricity lost in the desorber reboiler without reclaiming for A) 1-stage reclaiming and 8) 2-
stage reclaiming for the EfW operating case. Equivalent electricity lost due to desorber reboiler duty
is 41.35 MWe without reclaiming.
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Michailos, S., et al. (2025)
https://doi.org/10.1021/acs.iecr.4c04530




What we need to do next?

o Demonstrate solvent stability with two stage thermal reclaiming at increased
pressure (2.4bara) and reboiler temperatures (>130C)

for a period long enough to coincide with major plant outages (>15-20,000 hrs)
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Desorber PCC Absorption

Reclaimer

PCC Water Wash

CAD Design of SMART Lab Rig
(Joel et al., 2024)

(Frame - W:1.7m; L:2.7m; H:2.5m)
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L.ab Batch Thermal Reclaimer

=Step 1: Solvent Feed =Step 2: Water Feed

160

[+]
e O 140
~
= @120
5100 J
® ® 4
O 6 §
_ g o
jﬁ £ v
o

0 1000 2000 3000 4000 5000 6000 7000

Temperature / C°
o 8888833838

0 1000 2000 3000 4000 5000
Time /s Time/s

=Step 3: Residue Reduction

Temperature was used as
an indicator to determine
the endpoint of step 1 &2

0 500 1000 1500 2000 2500 3000 3500
Time /s



Post-combustion capture for net zero targets

o The focus today is on Combined Cycle Gas Turbine (similar principles
apply for other applications)

o Three principles for net zero
1. Use best practices for minimising lifecycle GHG emissions of gas supply

Zero residual CO, emissions (aka all of it, all the time):
2. 100% capture of fuel CO,
3. Eliminate start up and shut down emissions in flexible gas power plants



GWP (kgCO,e/MWh)

Impact of SUSD on GHG emissions
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Cownden, R., Lucquiaud, M. (2024) Assessing
best practices in natural gas production and
emerging CO, capture techniques to
minimise the carbon footprint of electricity
generation, under review
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FOCUSS Amine Capture Plant Upgrades
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FOCUSS Phase 2 Test Campaign
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FOCUSS

Early Steam
A CCGT start-up sequence produces steam that that cannot be admitted into the steam turbines

Normally bypassed and dumped into the condenser.
Investigates utilising this “Early Steam” & “Late Steam” for startup acceleration
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FOCUSS
Early Steam

Rich solvent storage/required increase in [solvent inventory! ]

Without the use of Early With the use of Early

SET Steam Steam
Hot +89% +24%
Warm +226% +40%
Cold +344% \ +49% y,

N 7
Circa 72 - 84% CO2 capture possible with early steam but without enhanced

solvent storage/increased inventory

I Expressed as a percentage of CO, free solvent inventory.

.  ASCOM




What we need to do next?

Demonstrate solvent storage for start-up/shut down at 40-50 tCO,/day scale
Demonstrate 100% capture during start-up/shut down with warm solvent

Demonstrate solvent management (two stage thermal reclaiming) to handle
short periods of high level of exposure with NOx and CO



Example of NGCC Cold Start Up — Normalized Parameters

Normalized Operating Parameters - Representative NG CT Cold Start

vOC PPMv
4

TN

CO PPMv e
o
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Activiation < Activiation

Normalized Parameters

/ o NOx PPMv

1.0¢ i Exhaust Mass Flow \

\ PM10 Mass lFlow

Full Speed
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/. "\ Mw output

60 120 180 240

Time (mins) 3

https://usea.org/sites/default/files/event-/Lunsford%20-%20Startup%20Shutdown%20Emissions%20considerations%202023%2006%2005.pdf




Example of NGCC Shut Down — Normalized Parameters

Normalized Operating Parameters - Representative NG CT Shutdown

VOC PPMv

CO PPMv /

Ox Calalyslt Conversion Decrease

p— with [xhuast Temperature
/ NOx PPMv / Fxhaust Mass Flow

\ PM10 Mass Flow

Normalized Parameters

MW OQutput

Full speed
No Load

Time (mins) ‘ 4

https://usea.org/sites/default/files/event-/Lunsford%20-%20Startup%20Shutdown%20Emissions%20considerations%202023%2006%2005.pdf




Conclusions — for CCGTs

None of the below matters without best practices in NG supply chain

o Longterm Target is <20 kgCO,eq/MWh

100% capture is possible at moderate additional costs

o Moderate increase in packing height,

o Increase in desorber pressure & temperature

Trade-offs between the marginal cost of capture and carbon dioxide removal
must be explored further

For MEA, two stage thermal reclaiming must demonstrate long-term solvent
stability with increased degradation

Start Up and Shut Down emissions: increase TRL by testing at 40-50 t/day scale
Understand exposure of solvent to short periods of high levels of Nox, CO and
VOC
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