

The Third MEA Campaign at the CO₂ Technology Centre Mongstad

L. Faramarzi^{1,2}, E. S. Hamborg^{1,2}, S. Pedersen^{1,2}, B. F. Fostås^{1,2}, N. E. Flø¹, A. K. Morken^{1,2}, E. Gjernes³, T. de Cazenove¹

¹CO₂ Technology Centre Mongstad (TCM DA), 5954 Mongstad, Norway
²Statoil ASA, PO Box 8500, 4035 Stavanger, Norway
³Gassnova SF, Dokkvegen 10, 3920 Porsgrunn, Norway

CO₂ Technology Centre Mongstad (TCM DA)

Located at the Mongstad industrial site:

Generic amine amine plant designed and constructed by Aker Solutions and Kværner.

Oil refinery (flue gas with ~13% CO_2) and gas fired power plant (flue gas with ~3.5% CO_2) available. TCM Owners: Gassnova (Norwegian state), Statoil, Shell, Total:

New participant agreement with operations for 3 more years (Aug 2017 – Aug 2020).

- catching our future

MEA-3 Approach and Targets

Approach:

1. follow (as much as possible) industrial approaches

2. existing guidelines for running CO₂ absorption amine plants

Targets:

MEA-3 aims to produce data and information that are relevant to realization of the full-scale CO_2 capture plants.

Business Significance of MEA Baselines: How They will be Used by Vendors?

Research Significance of MEA Baselines: How does it accelerate CCS?

MEA Campaigns 2013-2017

MEA-1 Highlights

- Dec 2013 Feb 2014
- Aker Solutions campaign
- Plant commissioning (in practice)
- CHP baseline established at capacity of 47.000 Sm3/hr and 4.1 GJ/t CO2
- Emission profiles and degradation mechanisms established

MEA-2 Highlights

- Jun 2015 Oct 2015
- TCM campaign
- Commissioning of the instrumentation project
- CO₂ mass balance closure
- CHP baseline revisited and re-established at the full capacity of the amine plant and 3.6 GJ/t CO2

MEA-3 Major Goals

- Jun 2017 ongoing
- TCM campaign
- WP A: Reduction in CO₂ avoided cost by parameter investigations
- WP B: Reduction in technology gaps
- WP C1: Reduced energy and operational costs by model predictive control (Climit Demo: DOCPCC)
- WP C2: Process parameters impact on aerosol emissions and RFCC baseline (Climit Demo: AeroSolve)
- WP D: Reduced energy penalty and flexible operation (Academic collaboration)

Preliminary highlight results

WP B Technology Gap Closure:

Amine degradation is a major disadvantage of MEA as an absorbent for CO₂ removal

Injection of KHSO₃ oxygen inhibitor for reduced MEA degradation \rightarrow lower MEA degradation during operations with high O₂ flue gas (gas turbine)

WP C2 Aerosolve Climit Demo:

Aerosols has caused inherent and unacceptable amine emissions during previous carbon capture work, at TCM and elsewhere.

Previous installation of a Brownian diffusion filter has now allowed for CO₂ removal from refinery flue gas

MEA degradation inhibitor

- Injection of KHSO₃ (potassium bisulfite)
- $SO_3^{2-} + \frac{1}{2}O_2 \rightarrow SO_4^{2-}$

	NH ₃ emissions	Heat stable salt (excl. SO ₄ ²⁻) and degradation products
Without inhibitor	~ 20 ppm	~ 1 (normalized)
With inhibitor	~ 2 – 3 ppm	~ 1/10 (relative to normalized)

- Degradation from 1.5 kg MEA/ton CO_2 to about X kg MEA/ton CO_2 (to be assessed)
- Injection philosophy;
 - SO_3^{2-} solvent bulk concentration about 500 1000 ppm, reaction with O_2 in the film.
 - Use of NH₃ emissions for estimating SO₃²⁻ dosage rates during operations (equivalent to oxygen absorption)
 - Potassium ions used as indicator for total amounts of inhibitor injected
 - Use of reclaimer to remove K₂SO₄ with caustic injection when approaching solubility limits

Aerosolve Climit Demo

- Refinery flue gas (RFCC) contains high amounts of sulfuric acid mist
 - Up to about 10 ppm SO₃ equivalent and some catalyst fines
- Previous operations demonstrated unacceptable amine emissions of about 500 1000 ppm
 - Emission permit breaches, neighbor complaints, high loss of amines
- Much resources used to investigate the RFCC flue gas
 - ELPI+ and iso-kinetic measurements
 - 16 25 million particles per cm³, primarily <u>aqueous</u> sulfuric acid mist particles
 - Conducted further investigations;
 - Use of 1000 Sm3 / hr pilot Brownian Diffusion (BDU) filter
 - Mixing of RFCC flue gas into gas turbine (CHP) flue gas for determining relation between particle amounts and emissions
- Investment decisions for a full scale BDU filter installation taken by TCM owners
 - Stable pressure drop of about 25 mbar across filter, no indications of clogging
 - 0.5 millions particles / cm³ downstream filter
 - Design 35.000 Sm³/hr, total installation costs about 10 MNOK (1.2 MUSD)

Aerosolve Climit Demo

Thank you for your attention!!!

Acknowledgments to TCM DA owners

Ground level instrument house