

BACKGROUND AND MOTIVATION

Amine-based CO₂ capture is widely considered the most robust technology for capturing carbon dioxide from industrial processes due to its maturity, retrofit compatibility, high capture efficiency, and proven performance. However, it's important to acknowledge its challenges.

CHALLENGE

- High energy demand
- 3 4 GJ steam/tonne CO₂ captured for MEA
- Secondary emissions of ~0.06 − 0.11 tonne CO₂/GJ steam

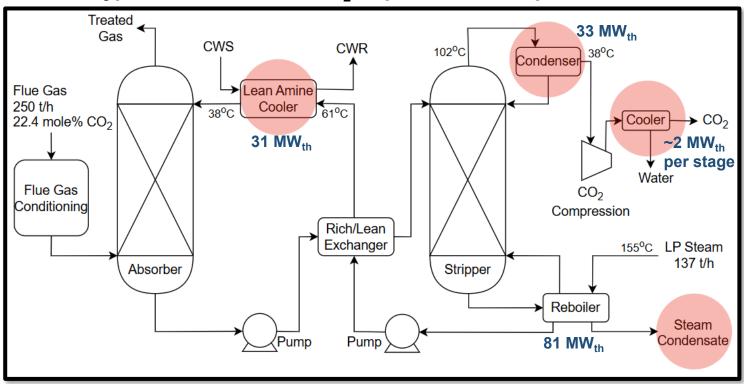
OPPORTUNITY

- Replace fossil steam with electrified heat via HTHPs + low carbon electricity
- State of the art HTHP (gas compression with or without MVR)

KEY QUESTIONS

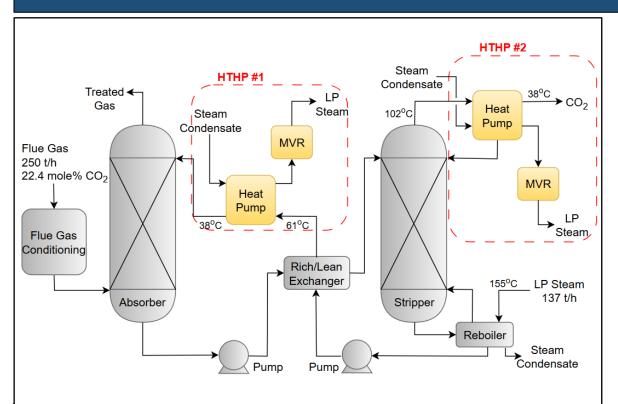
- · Feasibility of providing all the steam demand via HTHP from available waste heat?
- Best waste heat sources to consider?
- HTHP performance comparison against conventional steam production methods?

OBJECTIVE AND METHODOLOGY


SCOPE

- Model HTHP cycles using various refrigerants with different configurations to produce LP steam
- Assess performance based on COP, compressor power requirements, refrigerants limits, etc.
- Define multiple scenarios to identify optimal configuration for integration based on their performance

METHODOLOGY & PROCESS CONDITIONS


- Simulation platform: Aspen HYSYS V14⁽¹⁾
- Flue gas source from a representative cement plant
- CO₂ capture reboiler temperature: 117°C
- Target steam: 137 t/h at 5.2 bara and 155°C(2)
- Available heat sources
- Stripper overhead stream
- Lean amine stream to amine cooler
- CO₂ compression section (if included)
- Steam condensate exiting the reboiler
- (1) Property packages: Peng-Robinson for refrigeration section and IAPWS-95 for steam production section
- (2) Heating duty: 290 GJ/h; 3.76 GJ/t CO₂ for capture rate of 97%

Available Heat Sources within a Typical Amine-Based CO₂ Capture and Compression Unit

SINGLE STAGE HIGH TEMPERATURE HEAT PUMPS ON LEAN AMINE AND STRIPPER OVERHEAD STREAMS

Design Basis

- Refrigerant condensation temperature: 130°C
- Refrigerant evaporation temperature: 33°C
- Compressors efficiency: 75%
- Heat exchangers minimum approach temperature: 5°C
- No pressure drop across heat exchangers
- No internal heat loss in the system

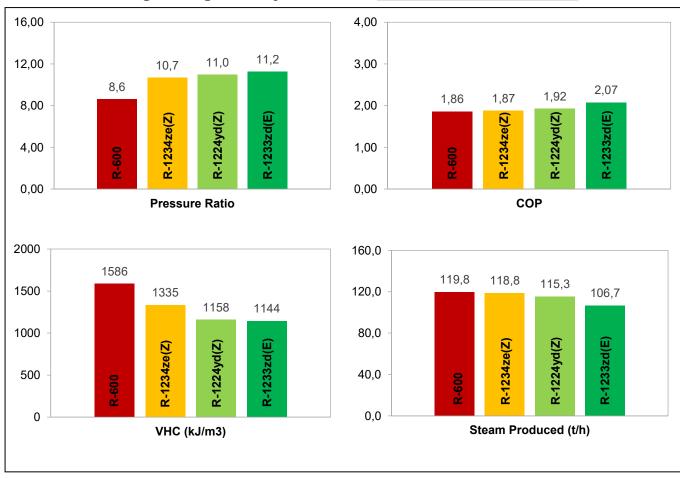
Performance Results of a R-600 Single Stage Cycle + MVR on Lean Amine vs. Stripper Overhead Stream						
Parameter	Parameter HTHP #1 HTHP #2					
Heat source	Lean amine	Stripper overhead				
Configuration	Single stage cycle + MVR	Single stage cycle + MVR				
Heat Pump Section						
Refrigerant	R-600 (n-butane)	R-600 (n-butane)				
Available heat, GJ/h	111.5	117.1				
Evaporation T/P, °C/bar	33 / 3.1	33 / 3.1				
Condensation T/P, °C/bar	130 / 26.5	130 / 26.5				
Temperature lift	97	97				
Pressure ratio	8.6	8.6				
HP compressor power, MW	36.1	38.0				
HP condenser duty, GJ/h	241.6	253.8				
Heat pump COP	1.86	1.86				
Refrigerant VHC ⁽¹⁾ , kJ/m ³	1,586	1,586				
MVR Section						
MVR compressor power, MW	7.8	10.7				
MVR COP	4.55	4.55				
Steam production rate, t/h	119.8 (87%) ⁽²⁾	125.9 (92%) ⁽²⁾				

- (1) Volumetric heat capacity
- 2) Percent of total steam demand

PERFORMANCE OF DIFFERENT REFRIGERANTS ON HEAT AVAILABLE FROM LEAN AMINE STREAM

Work Range of Different Refrigerants

Refrigerant selection criteria:


• Evaporation and condensation temperatures are within the refrigerant's work range

Suitable Refrigerants

- R-600
- R1234ze(Z)
- R-1224yd(Z)
- R-1233zd(E)

Single Stage Heat Pump + MVR on Lean Amine Stream(Available Heat: 111.5 GJ/h)

Result Highlights for Various Refrigerants Single Stage HP Cycle + MVR on Lean Amine Stream

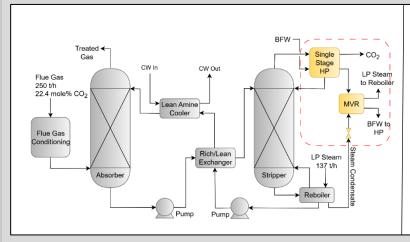
PERFORMANCE OF DIFFERENT HEAT PUMP CYCLES AND ARRANGEMENTS ON LEAN AMINE STREAM HEAT SOURCE

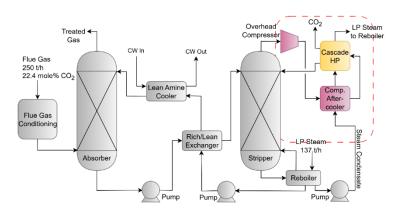
Performance Summary of Different HTHP Configurations on Lean Amine Stream (Heat available: 111.5 GJ/h)

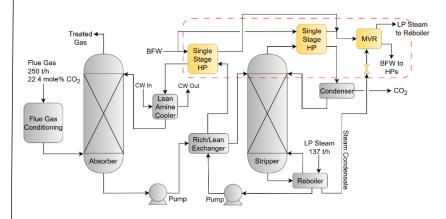
Parameter	Config. #1	Config. #2	Config. #3		Config. #4	
Description	Single stage HP + MVR	Single stage HP with	Cascade HP + MVR		Cascade HP	
	Sillyle Stage HP + WVK	economizer + MVR	LT cycle	HT cycle	LT cycle	HT cycle
Refrigerant	R-600	R-600	R-600	R-601	R-600	R-601
Sketch digram	BFW Condenser Comp MVR Exp'n Valve IHX Steam	Exp'n Valve Exp'n Valve Steam	Exp'n Valve Cascade Ex. Exp'n Valve Exp'n Exp'n	Comp Steam IHX	Exp'n Valve Cascade Ex. Exp'n Valve Exp'n Valve Evaporator	Comp IHX Steam
Evaporation/Condensation, °C	33 / 130	33 / 130	33 / 90	80 / 130	33 / 100	90 / 163
Pressure ratio	8.6	8.6	4.1	3.0	5.0	4.3
Temperature lift	97	97	97	•	13	30
Heat pump COP	1.86	2.48	2.5	0	1.8	89
MVR COP	4.55	4.55	4.5	5		-
Steam production rate, t/h	119.8	92.5	91.	8	11:	2.2
Percentage of total steam demand	87%	68%	679	%	82	2%

HTHP SYSTEMS TO PROVIDE THE TOTAL AMOUNT OF STEAM REQUIRED BY CO₂ CAPTURE PROCESS

Scenario #1


 Multiple heat sources: one single stage HP cycle on stripper overhead stream + MVR fed from the HP and steam condensate from the reboiler outlet


Scenario #2

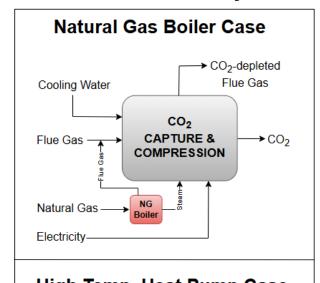

 Single heat source: one cascade HP cycle on compressed stripper overhead stream (to boost heat duty) that directly produces steam at target temperature.

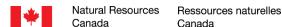
Scenario #3

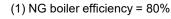
 Multiple heat sources: single stage/economizer HP cycles on both stripper overhead and lean amine streams + MVR fed from the two HPs and steam condensate from the reboiler outlet.

HTHP SYSTEMS TO PROVIDE THE TOTAL AMOUNT OF STEAM REQUIRED BY CO₂ CAPTURE PROCESS

Parameter	Scenario #1	Scen	ario #2	Scenario #3		
	Heat Pump Section	Heat Pump Section		Heat Pump Section		
Cycle configuration	Single stage cycle	Cascade cycle		Single stage/economizer	Single stage/economizer	
Source Heat	Stripper overhead stream	Compressed stripper overhead stream		Lean amine stream	Stripper overhead stream	
Refrigerant	R-600	R-600	R-601	R-600	R-600	
Evaporation/condensation temperature °C	33 / 130	33 / 100	90 / 164	43 / 130	53 / 130	
Temperature lift	97	1	31	87	77	
Pressure ratio	8.6	5.0	4.3	6.5	5.0	
Compressor power, MW	38.0	15.7	24.9	10.1	13.7	
Condenser duty, GJ/h	254.1	274.7		99.5	155.9	
Heat pump COP	1.86	1	.88	2.73	3.15	
	MVR Section	Overhead Com	pression Section	MVR Section		
Compressor power, MW	9.8	6.5			.5	
MVR COP	4.54	4.55			55	
Direct heating duty, GJ/h	<u>-</u>	15.1 -			-	
Steam production rate, t/h	137.2	137.4 137.3			7.3	
Power demand per tonne of steam, kWh/t steam	348	296 (344) ⁽¹⁾ 243			43	

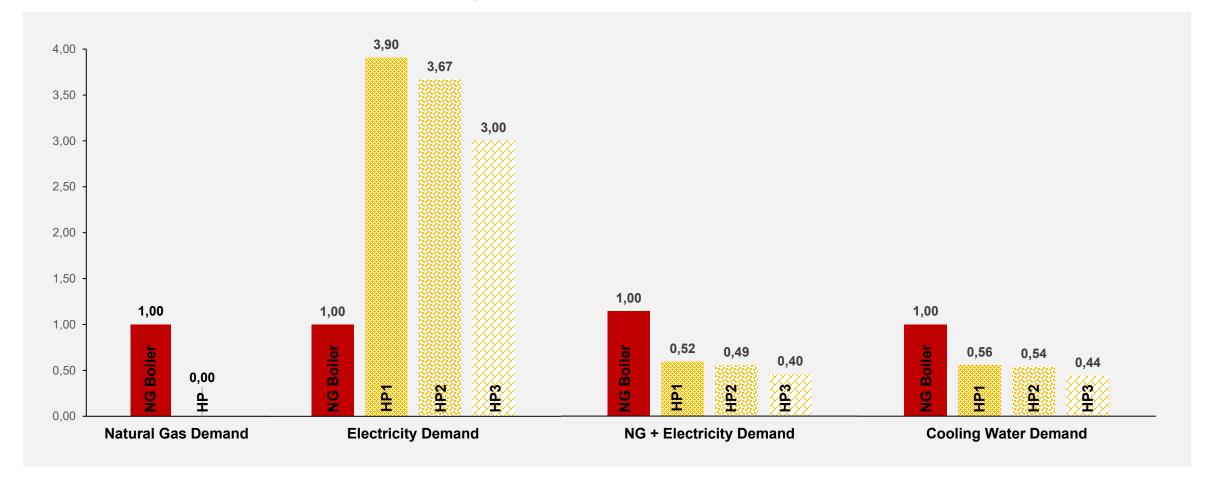

⁽¹⁾ Power demand including overhead compressor power


NG BOILER VS. HTHP FOR STEAM PRODUCTION PERFORMANCE SUMMARY


Performance Summary and Utility Demand of CO₂ Capture and Compression for NG Boiler vs. HTHP Steam Production Cases

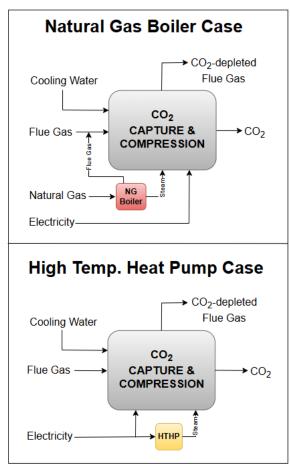
High Temp. Heat Pump Case						
Cooling Water	→ CO ₂ -depleted Flue Gas					
Flue Gas	CO ₂ CAPTURE & COMPRESSION					
Electricity———	HTHP the state of					

Parameter	Unit	NG Boiler Case ⁽¹⁾	HP Scenario #1	HP Scenario #2	HP Scenario #3
Flue gas flow rate	t/h	437.6		250.0	
CO ₂ in flue gas	mole%	16.0		22.4	
CO ₂ capture rate	%	97.0		97.0	
Captured CO ₂	t/h	101.5		77.0	
Non-captured CO2	t/h	3.1		2.4	
CO ₂ product pressure	bara	150		150	
CO ₂ capture steam demand	t/h	186		137	
Utility Demand					
Electricity	MW	21.4	63.2	59.2	48.7
	MWh/t-CO ₂	0.21	0.82	0.77	0.63
Cooling water	t/h	13,245	5,589	5,389	4,409
	t/t-CO ₂	130.5	72.6	70.0	57.3
Natural gas	GJ/h	502.9		0.0	
	GJ/t-CO ₂	4.96		0.0	
NG + Electricity	GJ/t-CO ₂	5.71	2.95	2.78	2.27



NG BOILER VS. HTHP FOR STEAM PRODUCTION HTHP UTILITY DEMAND COMPARED TO NG BOILER

Heat Pump Scenarios Specific Utility Demand – Normalized Results Based on NG Boiler Case



NG BOILER VS. HTHP FOR STEAM PRODUCTION **ECONOMIC ANALYSIS – PRELIMINARY RESULTS**

Economics Summary of CO₂ Capture and Compression for NG Boiler vs. HTHP Steam Production Cases

Cost Parameter ⁽¹⁾	Unit	NG Boiler Case	HP Scenario #1	HP Scenario #2	HP Scenario #3
Captured CO ₂	t/yr	808,912	613,671		
Equipment Cost Breakdown					
FG conditioning & CO ₂ capture	MM USD	32.3	21.8	21.8	21.5
CO ₂ compression	MM USD	9.8	8.0	6.4	8.0
Steam production via NG boiler	MM USD	4.2		0.0	
Steam production via HTHP	MM USD	-	25.0	27.1	23.1
Stripper overhead compression	MM USD	-	-	4.2	-
Total equipment cost	MM USD	46.4	54.8	59.6	52.6
Total capital investment	MM USD	307.2	362.0	393.2	347.5
Annualized capital investment	MM USD/yr	28.8	33.9	36.8	32.6
Operating costs ⁽²⁾	MM USD/yr	62.1	70.2	71.7	61.0
Total cost per tonne of CO ₂ captured	USD/t CO ₂	112.4	169.6	176.9	152.5

Cost estimation has been conducted for 2024 with CEPCI of 798.8 and Interest rate 8.0%. Plant lifetime is 25 years with plant availability of 0.91.

⁽²⁾ Based on natural gas, electricity, and cooling water prices of \$4.0/GJ, \$0.067/kWh, and \$0.016/t, respectively. Labor wage is \$105k/year-person.

CONCLUSION AND NEXT STEPS

Conclusion:

- Heat pumps can eliminate fossil fuel use, reduce cooling demand, and cut total energy consumption, but at higher CAPEX and OPEX due to significant increase in electricity demand.
- In this case study, using a natural boiler for steam generation in carbon capture is more cost-effective per tonne of CO₂ captured, but it results in higher levels of uncaptured emissions.

Next steps:

- Assess whether HTHP scenarios could be more economical in certain regions of Canada considering upstream emissions (from both natural gas and electricity production), as well as regional variations in energy prices (sensitivity and uncertainty analysis).
- Consider the cost of avoided CO₂ in addition to captured CO₂.
- Investigate non-hydrocarbon or natural refrigerants such as NH₃.

THANK YOU!

CONTACT

Navid Teymouri, M.Sc.

Process Engineer navid.teymouri@nrcan-rncan.gc.ca

Marzieh Shokrollahi, Ph.D.

Senior Process Engineer marzie.shokrollahi@nrcan-rncan.gc.ca

Philippe Navarri, Ph.D.

Manager, CCUS R&D Team philippe.navarri@nrcan-rncan.gc.ca

CanmetENERGY

Energy Efficiency and Technology Sector Natural Resources Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023