Predicted Performance of NCCC Pilot Plant using Piperazine with Advanced Flash Stripping

Gary T. Rochelle (PI), Eric Chen Yue Zhang, Peter Frailie, Joe Selinger The University of Texas at Austin

Advanced Flash Stripper (AFS)

Advanced amine scrubbing gives 50% efficiency Limited by capital-energy tradeoff

AFS also works with other solvents

Solvent	kg' (10 ⁻⁷ mol/Pa-s-m ²)	W _{eq} (kJ/mol CO ₂)		
		Simple stripper	AFS	
7m MEA	4.3	36.3	32.7	
10m DGA	3.6	37.0	34.2	
8m PZ	8.5	34.9	31.4	
5m PZ	11.3	36.5	32.3	
2m PZ /3m HMPD	10.1	34.9	31.0	
• Rich $P_{CO_2}^* = 5 kPa$, Lean $P_{CO_2}^* = 0.2 kPa$				

• Optimum cross exchanger
$$\Delta T_{LM} = 5K \left(\frac{\mu}{\mu_{MEA}}\right)^{0.1}$$

Outline

- Absorber performance
- Advanced flash stripper performance
- Performance with maximum cooling

National Carbon Capture Center (NCCC) Absorber

Possible long term conditions at NCCC 0.24 lean ldg, 150°C/82 psia stripper, 2x20 ft absorber packing

CO ₂ removal (%)	Gas Rate (MW)	Rich Ldg (mol CO2/eq PZ)	L/L _{min}	W _{eq} (kwh/tonne)	Q (GJ/tonne)
90	0.5	0.387	1.006	256	2.56
98.5	0.5	0.366	1.16	260	2.61
95.4	0.8	0.380	1.10	274	2.77

Outline

- Absorber performance
- Advanced flash stripper Optimization
- Performance with maximum cooling

AFS Heat Exchangers

Exchangers at UT-SRP and NCCC					
<u>Lean Idg = 0.24, rich Idg = 0.38, Q = UA∆T</u>					
	Area (m ²)	Δp _{avg} (psi)	UA (kW/K)		
Cold Cross	40 114	12 1.8	108 55		
Steam	2.3 4.1	14 10	16 16	2.3 2.6	
Hot Cross	20.4 32	5.5 15	28 31		
Cold Rich Bypass	3.2 8.5	5.7 8	0.46 2.3		

Warm Rich T optimization

National Carbon Capture Center (NCCC) Absorber

Full use of cooling enhances energy performance, 90% removal, 150°C Stripper

Lean Loading (mol CO ₂ /mol alk)	0.24	0.24	0.27
Cooling T (°C)	40	30	30
Rich Loading (mol CO ₂ /mol alk)	0.387	0.408	0.410
Stripper P (bar)	6.37	6.34	7.34
Heat Duty (GJ/MT CO ₂)	2.56	2.44	2.40
W _{EQ} (kJ/mol CO ₂)	40.6	39.1	38.8

Conclusions

- The Advanced Flash stripper will reduce W_{eq} by 10-20% for PZ and other solvents
- With the equipment at NCCC, 5 m PZ should provide
 - 90-99% CO₂ removal
 - with 0.5 -0.8 MW gas
 - at 2.5-2.6 MJ/tonne CO₂
- The energy requirement can be reduced with greater exchanger cost and lower cooling T

- Acknowledgement: "This material is based on work supported in part by the Department of Energy under Award Number DE-FE0005654."
- **Disclaimer:** "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."