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Motivation:

• CCS is deemed necessary for reaching climate change mitigation targets

• Direct air capture is CDR technology can offset emissions at high price and energy demand 

• The benchmark CCS is MEA scrubbing with capture rate of 90% which leaves 10% 

residual emissions

• Residual emissions can be mitigated through higher capture rates or offsetting via CDR 
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Aim:

• To investigate the role of direct air capture technologies in 
decarbonizing carbon intensive industries

• To determine the cost-effective extent of carbon capture on 
site

Assessing Cost of CO2 Capture From Flue Gas Streams With Low CO2 Concentration by Sina 
Hoseinpoori, Filip Johnsson, David Pallarès :: SSRN

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5068762
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5068762
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Method: MEA process
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Calcium hydroxide

Method: ALK-ABS process
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Sizing parameters:
• # Air contactor

• # Pellet reactor

• Calciner and 
slaker load

• Fuel and oxygen 
demand
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Mapping 
parameters:

• Inlet flow rate of 
flue gas

• Column height

• Molar fraction of 
water in flue gas

• Time of adsorption

• Time of preheating

• Time of desorption
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Method: TVSA
Climeworks DAC design This work
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Case study:

• Cement plant with 1 Mtpa clinker production

• CO2 concentration 18 %mol

• Flue gas flow rate 380 t/h

• Temperature before absorber 40℃

• The cost of TVSA and ALK-ABS are assessed assuming 1Mtpa cumulative deployed 
scale and applying learning rates



2025-10-03

Results: MEA column sizing

Capture rate 90% 95% 96% 97% 98% 99% 99.77%

Lean loading
[Mol CO2 / mol MEA]

0.24 0.23 0.21 0.21 0.2 0.17 0.2

Absorber packing 
height [m]

18.5 19 19 19.5 20.5 21.5 22

Stripper packing 
height [m]

7.5 8 9 9 9.5 12.5 12.5

SRD [MJ/ Kg CO2] 3.45 3.499 3.506 3.529 3.573 3.709 4.927

Power demand 
[KWh/Kg CO2]

0.145 0.1443 0.1437 0.1437 0.1436 0.1433 0.1611



2025-10-03

Results: ALK-ABS and TVSA costs
Cost [$/tCO2]/

CO2 Concentration [%] 
2.3 %

After(90%)
1.15%

After(95%)
0.92%

After(96%)
0.7%

After(97%)
0.48

After(97%)
0.2%

After(99%)

ALK-ABS 342 374 387 405 435 504

TVSA 198 274 317 378 532 802

• Cost of ALK-ABS and TVSA for capturing CO2 from air has been 

estimated  544 and 840 $/tCO2 respectively.

• There is a cross over between the cost of TVSA and ALK-ABS in the 

CO2 concentration range 0.48-0.7%
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Next steps:

• Finalize technoeconomic assessment to compare marginal cost avoidance with 
the cost of DAC

• Apply the same methodology for other industries and concentrations.

• Considering intercooling in the MEA model.
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Results: MEA column sizing
Capture rate 90% 95% 96% 97% 98% 99% 99.77%

Lean loading
[Mol CO2 / mol MEA]

0.24 0.23 0.21 0.21 0.2 0.17 0.2

Absorber packing 
height [m]

18.5 19 19 19.5 20.5 21.5 22

Stripper packing 
height [m]

7.5 8 9 9 9.5 12.5 12.5

Absorber diameter [m] 8.185 8.308 8.246 8.282 8.28 8.193 7.84

Stripper diameter [m] 4.78 4.9 4.89 4.92 4.94 5 5.82

SRD [MJ/ Kg CO2] 3.45 3.499 3.506 3.529 3.573 3.709 4.927

Power demand 
[KWh/Kg CO2]

0.145 0.1443 0.1437 0.1437 0.1436 0.1433 0.1611
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Net-zero Hierarchy
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