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EU project HiPerCap

 EU-Australia twinning project

 Coordinator: SINTEF MC             
(Dr. Hanne Kvamsdal)

 Partners: 
✓12 EU partners

✓1 from Australia

✓1 from Russia

 Duration:
✓4 years, Jan 2014 - Dec 2017

 Budget:
✓7.7 M€ (4.9 M€ from EU)
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http://www.sintef.no/projectweb/hipercap/



Project objectives

 Develop environmentally benign energy- and cost-efficient

technologies for post-combustion capture

 Develop a methodology for fair comparison and benchmarking 

of the technologies

 Develop technology roadmap for the two most promising

technologies
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Key focus on potential of the capture technologies

Specific objectives
✓ Reduction of 25% energy penalty compared to the State-

of-the-Art



Post-Combustion capture technologies in HiPerCap

Absorption

✓Proof-of-concept of 4 solvent concepts

➢DMMEA+enzyme, precipitating solvents, strong bicarbonate solvent systems, 

absorption combined with algea growth (utilization concept)

✓Feasibility study of bio-mimicking concepts

Adsorption

✓Testing of various sorbents including "green" sorbents

✓Studying two reactor systems (fixed-bed and moving-bed)

Membrane

✓Hybrid (polymer + nanoparticles) membranes

✓Supported ionic liquid membranes5
Images: www.co2crc.com.au



ASSESSMENT AND BENCHMARKING IN HIPERCAP (2)

6

Develop and apply an assessment methodology for emerging 

technologies on different TRL-level

• Develop a KPI based methodology with a consistent way of scaling up to a 
representative scale of application.

Idea 

• Define a clear base case, use defined system boundaries, modeling approach 
and comparison criteria. Select the two most promising technologies for further 
studies.

Work in the project

• Develop a fair methodology for comparison of immature technologies at 
different TRL levels.

Challenges

• Methodology developed based on two stage selection process

• Reference case established and the integrated process simulated

• Energy assessment finished for all chosen concepts

• Cost KPI method developed, but needs further refinements

Results so far



Assessment and Benchmark methodology (1)
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 Two stage selection approach due to various TRL levels:

1. Screening stage to check if enough data available and to check if no environmental showstoppers

2. Evaluation stage involves: integration with a power plant, compare to a reference capture technology 

and ranking based on energy, emission and cost KPIs 

 Focus here: energy KPI 

✓ Specific Energy Penalty of Avoided CO2 (SEPAC):

➢ Description:

The specific loss in power output of the power plant, with and without the CO2 capture process

➢ Math:

SEPAC=(Pref - P)/(ϕCO2ref - ϕCO2 ) 

where:

P = net electric output of the power plant in MWe

ϕCO2 = the emitted flow of CO2 in kg/s

subscript ref means the power plant without capture



Assessment and Benchmark methodology (2)
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• Power-plant: Advanced-supercritical pulverized single unit coal boiler (ASC) from 

EBTF*

• Benchmark capture system: absorption based

with CESAR1 as solvent system** and conventional absorber/stripper process 

(simulated in Aspen Plus)

• All capture processes integrated with the ASC process

• Specifications:

• At least 85% capture rate and 95% purity (CO2 product stream)

• Six absorption, two adsorption, and four membrane based processes

*N. Booth et al., (2013), European Best Practice Guidelines for Assessment of CO2 Capture Technologies, CESAR Deliverable D2.4.3, March, available at http://www.co2cesar.eu
**Knudsen, J., Andersen, J., Jensen, J.N., and Biede, O. Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale, presented at 
the GHGT-10 conference in Amsterdam 2010

http://www.co2cesar.eu/


General flow diagram for capture plant integration
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Work flow up to first stage evaluation

10



Work flow second stage evaluation and final 
benchmark
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Scope 5 - Reference Power plant

✓ PROATES

Scope 4 - Compression train 

✓ Aspen Plus

Scope 3 – Pre-treatment and conditioning

✓ Optional, dependent on capture technology

✓ E.g. NOX/SOX removal

Scope 2 -Capture process

✓ Aspen adsorption

✓ Aspen Plus RateSep

✓ CO2SIM

✓ Matlab and others

Scope 1 - Small scale modelling

✓ Experiment modelling and validation
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Large scale modelling in HiPerCap
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• One Capture train with 90% CO2 Capture

• Aspen Plus Ratesep

• No Intercooler or Lean Vapour Compression

• Solvent

• Cesar 1 Solvent  

• Columns (One Capture train)

• 70% Flooding/Capacity

• Absorber section D=18.2m, L=16.5 m (Mellapak 2x)

• Desorber section D=10.4m, L=10 m (Mellapak 2x)

• Utilities (scope 2+3+4)

• SRD=3.02 GJ/tonne CO2 (443.4 MWth )

• Steam (S1)=1.23 tonne/tonne CO2

• Electric power consumption =0.44 GJel/tonne CO2 (120 KWhel /tonne CO2)

• Cooling water=105 tonne/tonne CO2
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Reference Capture plant modelling and SEPAC value
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Comparing ENERGY KPI (SEPAC) Absorption systems

 Cases

✓ Enzyme catalysis of CO2 absorption (PRLD, 

DMMEA)

✓ Precipitating solvent systems (Alanine, Taurine)

✓ Strong bicarbonate forming solvent (Sol 1, Sol 2)

 All similar performance as reference

 CO2 compression equal

✓ Exception Taurine (stripper pressure 4 bar)

 CCS aux

✓ Fan

✓ Solvent pumps

 Steam consumption

✓ ~3 MJth/kg CO2

✓ Steam LP to Electric

➢ Factor of 4-5
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Comparing ENERGY KPI (SEPAC) Adsorption systems

MBTSA (Moving bed)
✓Final modelling/optimization not finished

before the comparison with all technologies

➢CO2 purity failure

➢CO2 capture rate failure

✓More promising results after deadline, but
no time for integration with power-plant 
simulation

 HE1 (Fixed bed )
✓Final modelling/optimization not finished

before the comparison with all technologies

➢High energy demand

✓More promising results after deadline, but
no time for integration with power-plant 
simulation



 Cases:

✓ 2 Mixed matrix (hybrid) membranes: 

FSCM 1, FSCM 2

✓ 2 Supported ionic liquid membranes:

ION 1, ION 2

No steam, only mechanical energy

✓ E.g. CCS AUX (ION 1)

➢ Fluegas compression: 1.05 MJel/kg CO2

➢ Vacuum pumps: 0.4 MJel/kg CO2

✓ CO2 "boosting" 2 bar: 0.08 MJel/kg CO2

✓ Flue gas Expansion: -0.56 MJel/kg CO2

Membranes should be further improved (highly

complex)

 Process should be more optimized and possibly

more integrated with the power-plant

 Look for application with lower capture rate 

requirement
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Comparing ENERGY KPI (SEPAC) Membrane systems



Ranking of technologies based on energy KPI

Rank Case Capture rate (%)

1 Alanine (abs.) 90

2 Sol 1 (abs.) 90

3 Taurine (abs.) 90

4 DMMEA (abs.) 90

5 Sol 2 (abs.) 90

6 CESAR1 BASE 90

7 ION 1 (mem.) 85

8 FSCM 1 (mem.) 85

8 FSCM 2 (mem.) 85

10 PRLD (abs.) 85

11 ION 2 (mem.) 85

12 MBTSA (ads)1 71

13 HE1 (ads) 85
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1  MBTSA case does not meet the minimum requirements



Conclusions

• The absorption based alanine case performs the best and has the highest ranking 

• All the absorption technologies have the highest ranking 

• The assessment of the Energy KPI for the novel capture technologies, shows that none of the 

technologies outperforms CESAR1 by 25 %. 

• The best performing novel capture technology has a 7.2 % lower energy penalty compared 

to CESAR1.

• Given that the capture technologies are novel and that the focus has been on developing 

more energy efficient and more environmentally benign processes, this result is not 

surprising.

• The two chosen technologies for further studies are the Alanine and the SOL1 cases
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FURTHER WORK WITHIN HIPERCAP

• The cost KPI will be further refined

• Have identified gaps in knowledge and developed a technological roadmap for the 

industrial demonstration of the two chosen technologies.

• Improvements of models (based on experimental lab activities) and further 

optimization of the capture processes for the two chosen technologies are ongoing 
work.

• New benchmarking with the updated models and information will be done later 
this fall.

• The results presented here and the major results from the updated benchmarking 
will be summarized in a journal publication by the end of 2017.

• The major results from the project will be presented at a workshop in Oslo 13.-14. 
September 2017.
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