# **PCCC4 CONFERENCE** HETEROGENEOUS CATALYTIC CO<sub>2</sub>-MEA ABSORPTION WITH ALKALINE EARTH METAL CARBONATES;

Huancong Shi, <sup>1\*,</sup> Yunlong Zhou, <sup>2</sup> Raphael Idem,<sup>2</sup> Paitoon Tontiwachwuthikul <sup>2</sup>

- 1. Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China 200093
- 2. Clean Energy Technology Reserach Institute, Faculty of Engineering, University of Regina, Regina SK, Canada
  - \* Corresponding Author: Huancong shi; Tel 86-13501671535. E-mail address: <u>hcshi@usst.edu.cn</u>

## **OUTLINE OF THE WORK:**

- 1. Background
- 2. Experimental process and chemicals
- 3. Results: Solid chemicals catalysis:
  - 1. 1.0 M MEA solutions. With 0-25g CaCO3, MgCO3, BaCO3.
  - 2.3.0 M MEA solutions. With 0-25g CaCO3, MgCO3, BaCO3.
- 4. Conclusion

## **PCCC 4 2017 CONFERENCE**

#### Background:

• Three types of solid alkaline catalysts were selected for CO<sub>2</sub> absorption with MEA solvent. The classic mechanism of "catalytic carbamate formation" was confirmed here, in terms of heterogeneous catalysis. Similar to the aqueous hydroxide [OH-] can serve homogeneous catalyst of carbamate formation, several solid alkaline can serve as heterogeneous catalysts/promotors implemented for  $CO_2$  absorption in the amine scrubbing process. The solid catalysts,  $CaCO_3$ , MgCO<sub>3</sub> and BaCO<sub>3</sub>, can accelerate the CO<sub>2</sub> absorption in MEA solvent properly. These solid alkaline are proved to be good candidates for heterogeneous catalytic  $CO_2$  amine absorption. 3

## **EXPERIMENTS AND MATERIALS**

- Chemicals and CO<sub>2</sub> loading tests
  - Chemicals, MEA, HCl, CO<sub>2</sub> are commercially available.
  - The solid chemicals were purchased from HuiShan Chemical Ltd; they are magnesium carbonate (MgCO3), and magnesium carbonate hydroxide (Mg(OH)2(MgCO3)4<sup>5</sup>H2O). The CO2 gas was purchased from Tansool Chemical Ltd, and the chemicals MEA, HCl and methyl orange were commercial available from Guoyao Chemical Ltd.

#### Major Reference

- Idem, R., Shi, H., Gelowitz, D., Tontiwachwuthikul, P., 2013. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream. US Patent, 2013/0108532 A1.
- Idem, R., Supap, T., Shi, H., Gelowitz, D., Ball, M.; Campbell, C., Tontiwachwuthikul, P., 2015. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. Int. J. of Greenhouse gas control. 40, 6-25.

## **EXPERIMENTS AND PROCESS**

• Figure 1. Stirred Cell Reactors with suspended fine chemicals:



From Fig.1, 0-25 g of pelletized catalysts were wrapped in a net and hang up to the cock during the catalytic reaction. We selected 3 concentrations of MEA, 1, 3, 5 mol/L, with 3 types of solid chemicals CaCO<sub>3</sub>, MgCO<sub>3</sub> and BaCO<sub>3</sub> to conduct the catalytic CO<sub>2</sub>-absorption.

 1. CO<sub>2</sub> absorption with 1.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and [Mg(OH)<sub>2</sub>(MgCO<sub>3</sub>)<sub>4</sub><sup>-5</sup>H<sub>2</sub>O]



Fig 2. 1 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g CaCO<sub>3</sub> at 20°C.

•  $CO_2$  absorption with 1.0 mol/L MEA solutions with  $CaCO_3$ ,  $BaCO_3$  and  $[Mg(OH)_2(MgCO_3)_4^{-}5H_2O]$ 



Fig 2. 2 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g BaCO<sub>3</sub> at 20°C.

 CO<sub>2</sub> absorption with 1.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and [Mg(OH)<sub>2</sub>(MgCO<sub>3</sub>)<sub>4</sub><sup>·</sup>5H<sub>2</sub>O]



Fig 2. 3 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g [Mg(OH)<sub>2</sub>(MgCO<sub>3</sub>)<sub>4</sub> <sup>·</sup>5H<sub>2</sub>O] at 20°C.

8

 2. CO<sub>2</sub> absorption with 3.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and MgCO<sub>3</sub>



Fig 3. 1 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g CaCO<sub>3</sub> at 20°C.

 2. CO<sub>2</sub> absorption with 3.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and MgCO<sub>3</sub>



Fig 3. 2 Catalytic  $CO_2$  absorption of MEA with aid of 5-25g BaCO<sub>3</sub> at 20°C.

 2. CO<sub>2</sub> absorption with 3.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and MgCO<sub>3</sub>.



Fig 3. 1 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g CaCO<sub>3</sub> at 20°C.

 2. CO<sub>2</sub> absorption with 3.0 mol/L MEA solutions with CaCO<sub>3</sub>, BaCO<sub>3</sub> and MgCO<sub>3</sub>.



Fig 3. 3 Catalytic  $CO_2$  absorption of MEA with aid of 5-20g MgCO<sub>3</sub> at 20°C.

# • The catalytic effect of solid alkaline onto CO<sub>2</sub>-MEA interactions:

- 1 The idea was validated experimentally that pelletized "alkaline earth metal carbonate" can serve as good-performance catalysts for CO<sub>2</sub>-MEA absorption. These catalysts were heterogeneous, which are only effective as being placed in the gas-liquid interface with bubbling.
- 2 Three types of solid chemicals were adopted as catalysts for CO<sub>2</sub> absorption with MEA solutions, and 5-20g of MgCO<sub>3</sub> / [Mg(OH)<sub>2</sub>(MgCO<sub>3</sub>)<sub>4</sub><sup>·</sup>5H<sub>2</sub>O], CaCO<sub>3</sub>, and 5-25g BaCO<sub>3</sub> were tested onto MEA solutions under 1, 3 and 5 M concentrations at 20°C.

## ACKNOWLEDGEMENT

 This financial supports are provided by Youth Teachers Support Program (ZZs115042) and Young Eastern Scholar (QD 2016011) with Supporting Funding (10-17-307-005-11). The National Natural Science Foundation of China (NSFC Nos. 21606150) are gratefully acknowledged. Natural Sciences and Engineering Research Council of Canada (Canada) are also acknowledged.

