Session 5C - Heat Pumps & Thermal Integration
Wednesday, Sep 17, 2025, 15:50-17:30
Track 3 Stockholm & Rome Stream C

Profitability analysis of flexible operation of thermal
power with CO, capture in future electricity market

Hirotaka Isogai'+Takao Nakagaki! - Takashi Otsuki®?+Yuhji Matsuo3*

1. Environmental Research Institute, Waseda University
Institute of Advanced Sciences, Yokohama National University

2.
3. The Institute of Energy Economics, Japan
4. College of Sustainability and Tourism, Ritsumeikan Asia Pacific University

&®

Graduate School of Creative Science and Engineering, Waseda University




Power generation and electricity prices with increased VRE

Electricity supply and demand and electricity price chart in Kyushu area in Japan (October 9-14, 2024)
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Increasing variable renewable energy (VRE) =flexible operation of LNG and coal and fluctuation of electricity price
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Necessity of profitability analyses

What situation makes CCS economically viable?

Requirement 1 Requirement 2
CO, avoided cost Carbon prices Net present value or annual profits [USD/year]
[USD/t-CO,] [USD/t-CO,]

Tk >0
Y

Comparison of co, avoided cost and profitability

Profitability (i.e., net present value or

CO, avoided cost [USD/t-CO,] annual profits) [USD/year]

Popularity of the indicator High Low
Assumption of capacity factor of plant Fixed (and often high (=85%)) Calculated based on electricity market
Does electricity price affect the result? No Yes

Given flexible operation of thermal power plant and fluctuation of electricity price, profitability evaluation is also important.
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Research purpose and methodology

Purpose of presentation
Profitability evaluation for thermal power plants with CCS in electricity market via mathematical model, aiming at
* sensitivity analysis of key external factors (e.g., electricity price, fuel price, capacity factor)
» validation of a novel process (power to heat PCC)

Methodology: > 2 Plant-level profitability assessment

Energy system costs in Japan
Installed capacity of power sources, generated power, etc.

Electricity balances, net-zero in 2050, CO, storage potential, etc.
@ Output : Electricity prices (8760 h/year), Marginal abatement cost (=Carbon price)

(2Single plant model NGCC: Natural gas combined cycle
Objective function Annual operation profit for an NGCC plant (with CCS)

Decision variables Commitment status (i.e., on or off) and fractional load

Constraints Minimum load, ramp up/down rate, etc.

_ , : CAPEX: Capital expenditure
@ Output: Annual operation profit OPEX: Operational expense

Evaluation index: Annual profits <:| Annual CAPEX and fixed OPEX
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Conventional amine-based PCC

PCC: Post combustion CO, capture
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Power to heat (P2H) amine-based PCC*

PCC: Post combustion CO, capture

*Isogai and Nakagaki, Applied Energy 368 (2024) 123519
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Operation of P2H amine-based PCC
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Applied Energy

journal homepage: www.elsevier.com/locate/apenergy =

Power-to-heat amine-based post-combustion CO4 capture system with
solvent storage utilizing fluctuating electricity prices

Hirotaka Isogai , Takao Nakagaki

Environmental Research Cenire, Waseda University, 1011 Nishitomida, Honjo-shi, Saitama 367-0035, Japan
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Internarional Journal of Greenhouse Gas Conrtrol 132 (2024) 104065

Contents lists available at ScienceDirect
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Otsuki et al., International Journal of Greenhouse Gas Control 132 (2024) 104065
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* Based on the study by Otsuki et al.™?

 Update of specification and cost for CO, capture system based on recent reports™? (Tables below)
*1: Otsuki et al., International Journal of Greenhouse Gas Control 132 (2024) 104065

*2: Rochelle et al., International Journal of Greenhouse Gas Control 132 (2024) 104040
Main parameters of the CO, capture technology

Pre-combustion Post-combustion Direct air capture
CO, capture CO, capture P
Units 2020-2050 2020-2050 2020 (2030 |2040 |2050
Decrease in _power generation due to KWh/t-CO, ) 549 ) ) ] )
steam extraction
Power consumptions kWh/t-CO, 288 37 1535 |1458 [1385 |1316
Variable operating costs for consumables | JPY/t-CO, - 659 6656 |6656 |[6656 |6656
Plant lifetime Year 40 40 30 30 30 30
CO, capture rate - 90% 90% - - - -
Assumptions on CAPEX and global installed capacity of CO, capture technology
Units 2020 2030 2040 2050
. CAPEX JPY/(t-CO,/year) 48842 42503 41127 39796
Pre-combustion CO, capture 1 | i capacity | Million t-CO, /year 36.79 870 1840 3890
. CAPEX JPY/(t-CO,/year) 24704 19869 19398 18938
Post-combustion O, capture Installed capacity Million t-CO,/year 3.2 455 785 1355
Direct air capture CAPEX JPY/(t-CO,/year) 106778 26756 22307 18598
P Installed capacity Million t-CO,/year 0.01 90 298 985

Calculation methods are detailed in Isogai et al., Journal of Japan Society of Energy and Resources, Vol. 46, No. 4 (2025).
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(2Single plant model: Objective function

Constructed using General Algebraic Modelling (GAMS) optimization software with reference to previous research™?

Objective function
1, = ZVt(pef net. CSUP CSDown Cfuel CtCOz . Ctp,

Each symbol of the objective function

0&M sol cau waste capwat T&S capramp
—C7 = Ce7" = Cy —C " — Cy — Ct

Symbol Description Note
I, Annual operation profits Objective variable
Pte’t Pseudo-forecasted electricity price Linear interpolation of outlier and smoothing via a Savitzky—Golay polynomial filter
xpet Net power output cf. Appendix of our study*?
T Time step Assumed to be 1 hour
C:Up Startup cost 18239.9 USD/startup, cf. Appendix of our study™
cpbown Shutdown cost 0 USD/shutdown, cf. Appendix of our study*?
Cfuel Fuel cost Mentioned later, cf. Appendix of our study™
thz CO, emission cost Equal to the marginal abatement cost calculated by NE_Japan model
Cf’U&M Variable operating cost for thermal plant Excluding fuel cost, cf. Appendix of our study™?
cso! Amine solution cost 7.12 USD/kg-amine, cf. Appendix of our study™
csY Caustic makeup cost 2.44 USD/kg-NaOH, cf. Appendix of our study™?
cyraste Reclaimer waste disposal cost 0.436 USD/kg-waste, cf. Appendix of our study™
Cfapwat Cost for additional water used for CO, capture facility 0.233 USD/m3, cf. Appendix of our study ™2
C,;T&S CO, transport and storage cost 29.56 USD/t-CO,, cf. Appendix of our study*?
thapramp Cost for ramping CO, capture facilities Costs for additional generation losses due to load changes in the capture facilities

*1: Cohen et al., International Journal of Greenhouse Gas Control, 8 (2012), pp.180-195, *2: Isogai and Nakagaki, Applied Energy 368 (2024) 123519
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(2Single plant model: Main assumptions

* Power plant: NGCC with J class (1600 °C) gas turbine
e PCC: Typical amine-based PCC or P2H-PCC
Power plant specifications without PCC Specifications of amine-based PCC

Units Value Units Value
Rated power output MW 982.1 Maximum CO, capture rate % 90
CO, emissions intensity t-CO,/MWh 0.314 Specific reboiler duty GJ/t-CO, |[2.5
Plant efficiency - 62.6% Reduction in power output due to steam extraction |GJ/t-CO, |0.897*
Plant heat rate MMBtu/MWh 5.541 COP of heat pump (w/ P2H-PCC) - 3.0
*Calculated using Aspen Plus®; COP: Coefficient of performance
Decision variables Major constraints
Power plant | Absorber Stripper w/o PCC |w/PCC |w/P2H-PCC
Commit- Minimum yP 25% 25% 25%
ment status uP u? u® Maximum capacity factor 85% 85% 85%
Fractional Ramp rate for yP, y?, y°[/h] 100% 100% 100%
load yP y2 ys Minimum y?2, yS 30% 30% 30%
Relationship between y? and y° | N/A y2 = y5 | N/A
u=1: on, u=0: off 0< < l_l
Tank size N/A N/A o t=
! = l@15:00
Note

When purchasing electricity in the P2H-PCC case, basic charge of 423.39 JPY/month per kW and metered charge of 91.00 JPY/kWh™! were
considered as a wheeling charge; thus, the model is calculated as a mixed integer quadratic programming problem (MIQP). Otherwise, mixed

integer linear programming problem (MILP).
& Prog &P ( ) *1: https://www.tepco.co.jp/pg/consignment/notification/pdf/takusou_yakkan20241001.pdf

Calculation methods are detailed in Isogai and Nakagaki, Applied Energy 368 (2024) 123519.
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@Single plant model: Target of evaluation
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Results: Annual profits

W Annual profits w/o PCC E Annual profits w/ PCC B Annual profits w/ P2H-PCC O Electricity price
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Marginal abatement cost (=carbon price) calculated via NE_Japan model
Year 2030 2040 2050
Marginal abatement cost JPY/t-CO, 16279 44727 50962
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Ex. Operation behavior in single plant model

Power output & elec. price @Tohoku area May 2040
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Impacts of electricity prices on P2H’s profitability

Increase in annual profits owing to w/ PCC -> w/ P2H-PCC
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Correlation: period of extremely cheap electricity price_J = Increase in annual profits_'

~ >

In the future, period of extremely cheap electricity price_J (~+ VRE expansion)
~P2H-PCC is a proper CO, capture system in harmony with VRE expansion.
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Principal assumptions of sensitivity analyses

Principal assumptions in each scenario

Units Value
Low capacityLOW specific
Scenario name Base High fuel price reboiler duty
factor (CF)
(SRD)
Net power output of NGCC MW 981.1
Specific reboiler duty (SRD) of
amine-based PCC GJ/t-CO, 2.5 2.5 2.5 1.25
Fuel price (2030/2040/2050) USD/MMBtu 6.2/5.8/5.3 9.4/8.7/8.0 6.2/5.8/5.3 6.2/5.8/5.3
Maximum carbon capture rate % 90
Maximum capacity factor of NGCC % 85 85 42.5 85
MAC USD/t-CO, See table below

Fuel prices are based on actual import prices in the Ministry of Finance Trade Statistics™! and price trends in the IEA*2,

*1: https://www.customs.go.jp/toukei/info/ (Last access: 2024.11.19)
*2: International Energy Agency; World Energy Outlook 2022, (2022), p.110.

Marginal abatement cost (=carbon price) calculated by NE_Japan model

Year 2030 2040 2050
Marginal abatement cost B.ase & low -CF scenari_o 148.16 407.05 463.80
USD/t-CO High fuel price scenario 157.30 405.87 475.95
2 Low SRD scenario 145.99 405.25 474.38
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Results of sensitivity analyses

Annual average electricity prices of the past 5 years (FY2020-2024)*
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*Except for the unexpectedly high value in FY2022 due to Russian aggression in Ukraine
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Average annual electricity price is the most dominant factor for annual profit (**R2>0.95).
Thermal power with PCC is economically feasible depending on given conditions.

Profit is increased by reduction in SRD and adoption of P2H, but these impacts are limited.
Low CF will significantly reduce profit.
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Conclusions and key takeaways

This study evaluated the profitability of thermal power plants with post-combustion CO, capture in future electricity
market via mathematical modelling and calculation of CAPEX and fixed OPEX. The key takeaways are:

e External factors (electricity price, fuel price, capacity factors, etc.) dominantly affects annual profits. Depending on
these factors, thermal power plants with PCC is possibly, economically feasible even with current PCC specifications.

* Profitability evaluation should be conducted more and more in accordance with various scenarios.
e Carbon price successfully motivates CCS implementation.
e w/PCC ->w/ P2H-PCC: Annual profits 1-17% _J

e P2H-PCCis in harmony with future VRE expansion.
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Appendix.
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CAPEX and fixed OPEX

CAPEX of main component Fixed OPEX
L . lant cost and then adding labour costs.
NGCC Power generation cost verification WG™ P &

*1:https://www.enecho.meti.go.jp/committee/council/basic_po
Capture facility Estimation of DOE’s FEED project 2 licy_subcommittee/mitoshi/cost_wg/2021/data/08_06.pdf
*2: Rochelle et al., International Journal of Greenhouse Gas

Heat pum 200 €/kW,, 3
pump / iy Control 132 (2024) 104040
. *3. _
. Calculated CAPEX and fixed OPEX 3: Meyers et al., Solar Energy 173 (2018) 893-904
J Fixed OPEX
> 300 w/ PCC=w/ P2H PCC
g - 289 a8 o W Other CAPEX
5 % 250 | 13.1 : . 13.0
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5 2 200 } gp == o3 . | ifatime:
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= § 150 | 74.9 74.9| \ 2.2 B Heat pump * Interest rate: 8%.
3 80.9 80.6 * Baseyear: 2021
© 100 | 119 11.9 @ Additional cost for PCC |, A <\ med area:
' — trofit '
7.8 e ) 9.7 retrot . Japan
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Failure of CCUS projects mainly due to cost

Global proposed vs. implemented annual CO, sequestration (main figure),
and global implemented annual CO, sequestration by type (inset)*
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*Abdulla et al., Environ. Res. Lett. 16 (2021) 014036

Key factors for project outcome*
1. Capital cost
2. Technology readiness level
3. Credibility of project revenues
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‘Firm’ (or dispatchable) power resources

Review of 40 electricity deep decarbonization studies* *Jenkins et al., Joule 2 (2018) 2487-2510
Authors Year Publication | Geographic Firm Resources Considered
Scope (Selected in Lowest CO, Cases)

Akashi et al. 2014  Climatic Global bio, bio CCS, coal, coal CCS,
Change gas, gas CCS, nug, oil, oil CCS

Amorim et al. 2014  Energy Portugal coal, gas, res. hydro (existing),

oil, bio

Bibas and Méjean 2014  Climatic Global bio CCS, coal, coal CCS, gas,
Change gas CCS, nuc, oil

Heuberger et al. 2017 Comp. & UK coal CCS, gas, gas CCS, nuc
Chem. Eng.

Jacobson et al. 2014  Energy California geo, res. hydro (existing)

Sepulveda et al. 2018  Joule New England, Texas bio, gas CCS, nuc

res. hydro: reservoir hydro-power; nuc: nuclear power

20/40 studies: Cost optimization considering ‘firm’ (or dispatchable) resources
=» All these studies include a substantial share of ‘firm’ resources in their lowest cost scenarios.
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