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Monoethanolamine Needs Reclaiming

= MEA degradation is not linear
®  Accelerates when high
amounts of impurities are
present.
= Can encounter runaway
degradation problems
®  Mass degradation rates
= Adequate reclaiming is a necessity
" Need to remove most if not all
impurities to stop
accumulation
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Results of the 18-month test with MEA at the post-combustion capture

pilot plant at Niederaussem https://doi.org/10.1016/j.ijggc.2019.102945
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Selectivity For Monoethanolamine Reclaiming

products
MEA reclaiming, total number of inventory volumes

reclaimed
Expected impurity reduction for ideal selectivity, s=1 96.02%

Oct-15 reclaiming run after 1843 hrs operation - ~95% >95% >95%
reduction from reclaiming

Apparent selectivity for removal (for 95%) 0.9986 0.9986 0.9986

CESAR1 reclaiming, total number of inventory 4.5

volumes reclaimed

Expected impurity reduction for ideal selectivity, s=1 98.98%

Apr-20 reclaiming run after ~1600 hrs operation - 84% 95% 89%
reduction from reclaiming

0.4072 0.6657 0.4905
15.1% 3.9%  10.0%
82% 93%  89%

0.3811 0.5909  0.4905
17.1% 6.0%  10.0%

Table 1. Reported TCM thermal reclaiming data and estimated selectivities for removal (see (Gibbins, 2024) for calculation details)




"Traditional’ batch reclaiming

= Dirty solvent feed into the reclaimer Vapour to Desorber

= |mpurities are rejected and accumulate at |

the reclaimer bottoms

= The temperature as that occurs gradually
increases.

Batch Reclaimer

m Operated in 2 to 3 steps
Solvent Feed- To a max

Temperature

= Water Feed- To a max recovery Water
(water consumption) Caustic

= Residue Concentration — Dirty Solvent

Residue Build-up

Reduction of waste

Heat Input



Steady-state reclaiming 1

Vapour to Desorber

Dirty solvent feed into the reclaimer |

Impurities are rejected and are extracted form the
reclaimer bottoms

Steady-State

The temperature can be set at a maximum Reclaimer

allowed temperature
* |east energy and water consumption

Water
Caustic?

Dirty Solvent

Residue

Heat Input



Steady-state reclaiming 2

Stezdy state reclaimer 2t 2.4 bar

Vapour to Desorber

210
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To keep the temperature low, you need to add more water or increase
blowdown as your solvent becomes more impure

Heat Input




Desorber-connected continuous reclaimer for MEA

+ Retrofit study for a brown coal power plant in Australia
Bechtel (2018) for CO2CRC, Retrofitting an Australian Brown Coal Power Station with Post-Combustion Capture, http://www.co2crc.com.au/publication-category/reports

= Continuous reclaimer
venting into stripper
to recover thermal
energy

« Typically, can reclaim
one inventory volume
in one week to one
month

» Can reject >99% of
impurities in simple
reclaimer with heat
recovery — not
possible with blends

* Reclaimer waste may
be usable for SCR

LP Steam**
(Kettle Boiler)

Recovery
Exchanger

= Stream Designations PCC Process Overview
(Refer to Table 5.7-1 i
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Two-stages at steady state

Vapour to Desorber

]

First Stage Steady

State @ pressure of
the Desorber

181\

Dirty Solvent

Condensed Liquid to Absorber

Caustic

....BLOWDOWN.... N

r
1t stage Reclaimer
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Second Stage
Steady State @
atm/sub pressure

Water

Heat Input

bottoms solvent
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MEA recovery (%)

Two-stage vs single stage at steady state

A 1-st aimi B, 2-stage reclaiming = 135°C
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MEA recovery as a function of the water added in the 1st reclaimer. Water at the 2nd reclaimer is fixed at 30% of the inlet flow. Both stages operate at the same temperature.
Can be found @ DOI: 10.1021/acs.iecr.4c04530

Tradeoff between MEA recovery, Water addition and Degradation product recovery



Limits with steady states 1

Operating a reclaimer at 145 deg.C.

A large trade off between blowdown rates or Increasing Impurities
o

water addition. 3000

3 0 th c t f t 100MEA, 20HEEDA, 2NV
scenarios with varying amount of impurities. . o 100MEA, SHEHDA, 0.5NY
——100MEA, 10HEEDA, 1NV

At a set water feed rate you must have

different blowdown rates to keep temperature

2000
constant.

Second steady state suffers the same limits 1500

Water Feed mol/h

Can achle\I/e x 100% relcovery but that
is extremely water costly
" Potential to have a 3" batch stage to 1000 \

limit water consumption and maximise \
BIER EERE (e ;0 917 28 Blowdown rate

This is just modelling which needs validation. : l ? laiilwdouf r:f., mol/h :I[:EA "’ ;
" Use built lab steady state and batch
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MEA Recovery



Limits with steady states 2

Operating a reclaimer at 145 deg.C.

A large trade off between blowdown rates or
water addition.

3 scenarios with varying amount of impurities.

At a set water feed rate you must have
different blowdown rates to keep temperature
constant.

Second steady state suffers the same limits
®  Can achieve x 100% recovery but that
is extremely water costly.
®  Potential to have a 3" batch stage to
limit water consumption and maximise
MEA recovery (vacuum)

This is just modelling which needs validation.
" Use built lab steady state and batch
reclaimer.
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Stage 1 Continuous Thermal Reclaimer

Joel, Lucas and Pokora, Marcin and Ibrahim, Aisha and Lucquiaud, Mathieu and Michailos, Stavros and Gibbins, Jon, SMART - Solvent Management At Reduced Throughput — A Prototype Demonstration
Plant (December 19, 2024). Proceedings of the 17th Greenhouse Gas Control Technologies Conference (GHGT-17) 20-24 October 2024, Available at SSRN: https://ssrn.com/abstract=5064129
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Lab Batch Thermal Reclaimer 1

=Step 1: Solvent Feed =Step 2: Water Feed
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Lab Batch Thermal Reclaimer 2

=Step 1: Solvent Feed

o 160
140
120

500 1000 1500 2000 2500 3000 3500
Time /s
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Real time Density Measuring during Reclaiming

=Modified batch apparatus

= Equipped with a Wika devil sensor
for ‘real’ time density of distillates.

=Can see density changes through
out the reclamation process.

=Can this be used to indicate at
which points 2"d stage reclaiming
steps should stop?
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Current Status & Next Steps

=Modelling can give ideas but in reality, too
complex

=Steady state and batch designs built & ready
for operation using added impurities of choice

=Run the 2 reclaiming stages in tandem

="Run long-term tests, quantify amine recovery,
validate benefits and model

=Reclaiming should not be an afterthought, and
you cannot look at it in isolation because the
way you reclaim effects the whole process.
Hence, the development of the SMART rig. See
slides from Session 7A talk 4
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