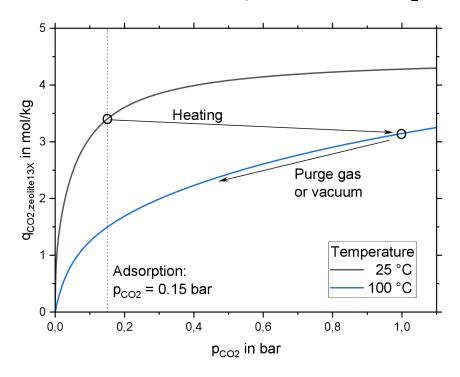


Modelling the design of dual functional adsorbents for inductively heated CO₂ TSA

Adsorption based CO₂ capture processes

Swing Adsorption (SA) works by alternating conditions between adsorption and desorption:

- Pressure (PSA) Naturally electric
- Vacuum (VSA)
- Temperature (TSA)

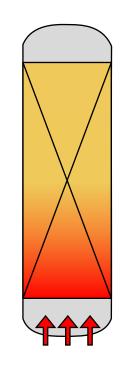


- + High recovery and purity
- Waste heat needed, otherwise energy intensive
- Slow heating and cooling

Purge gas or vacuum (VTSA) enhances TSA regeneration

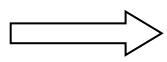
Example:

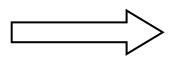
- CO₂ isotherms on zeolite 13X
- Post-combustion composition: 15% CO₂ in N₂

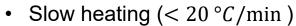


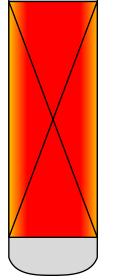
Electrifying TSA

Over reactor wall

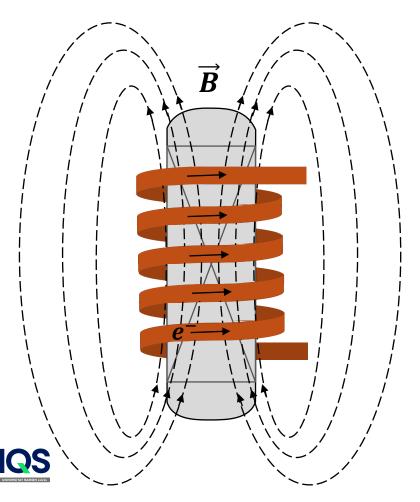

Hot purge gas



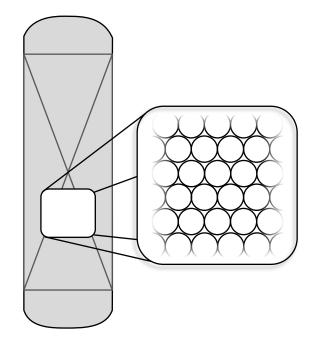

Electric heating methods: • Induction heating


- Resistive heating
- Microwave heating

- Heating is inhomogeneous
- Parasitic heating


Heat generated inside adsorption bed:

- Faster heating (50 150 °C/min)
- Produces heat on the spot
 - More homogeneous
 - Less parasitic heating



Induction heated TSA

Alternating magnetic field \vec{B}

Adsorbent bed filled with DFM beads

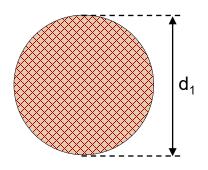
Heating properties:

- (Ferro-) magnetism
- Electric conductivity

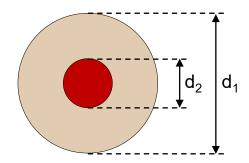
Typically, adsorbents are neither of both

- → Create dual functional materials (DFM)
 - High adsorption capacity & selectivity
 - Induction heating properties

Example:

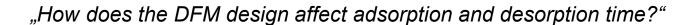

- Zeolite 13X for adsorption
- Fe₃O₄ for heat release

Energy release "SAR" measured:


 $SAR\left(\frac{W}{g}\right)$ at constant \vec{B} and $20^{\circ}C < T < 100^{\circ}C$

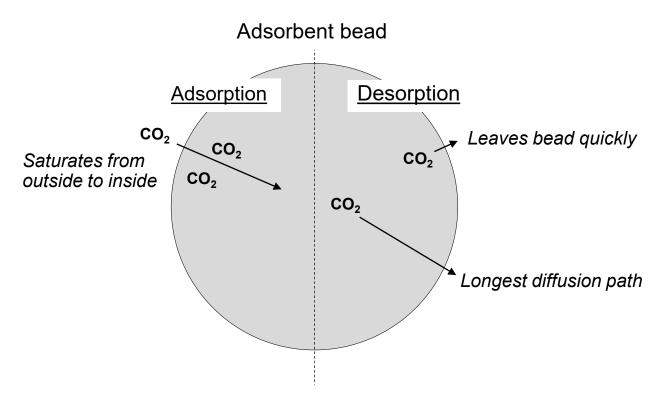
DFM design model idea

Homogeneous (HM):



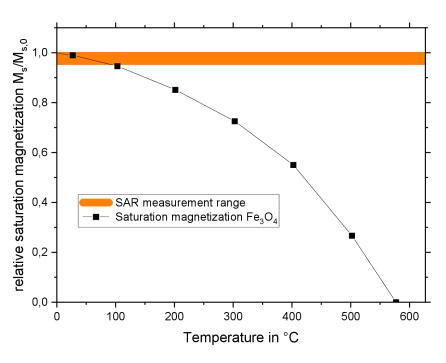
Core-shell (CS):

Fe₃O₄


	Homogeneous (HM)	Core-Shell (CS)
Adsorption & Heating properties:	Diluted by mass fraction, but over whole bead	Full properties, but in separated parts
Diffusion path:	Full bead distance in diluted capacity	Shorter diffusion distance in higher capacity
Temperature profile:	More homogeneous heating	Heat accumulation in centre → Diffusion closer to center is accelerated

Idea to model:

- Same bead size and mass fractions, only distributed differently
- Adsorption (15% CO₂ in N₂)
 - Desorption (N₂ purge) under the same heating conditions


Expected effects

Core-Shell: Reducing diffusion depth and increasing internal temperature gradient

- → Steeper breakthrough curve at adsorption?
- → Faster desorption?

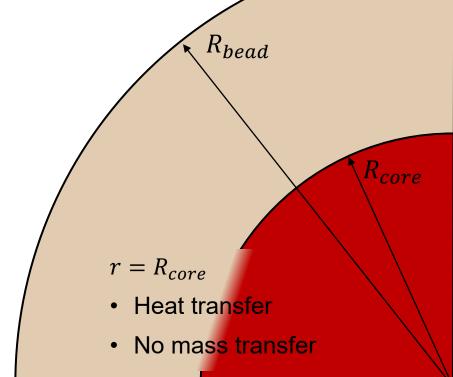
Magnetic properties drop with temperature*

→ Negative for heat accumulation in CS? "The hotter it gets, the less it heats"

^{*}From data of: Levy, D., Giustetto, R., & Hoser, A. (2012). Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. *Physics and Chemistry of Minerals*, 39(2), 169–176. https://doi.org/10.1007/s00269-011-0472-x

Mathematical model

	Mass balance	Heat balance
External flux	Convective film resistance	Convective film resistance
Internal flux	Fick diffusion (Knudsen & Binary)	Heat conduction
Source/sink	Adsorption equilibrium	Fe ₃ O ₄ energy release Heat of adsorption

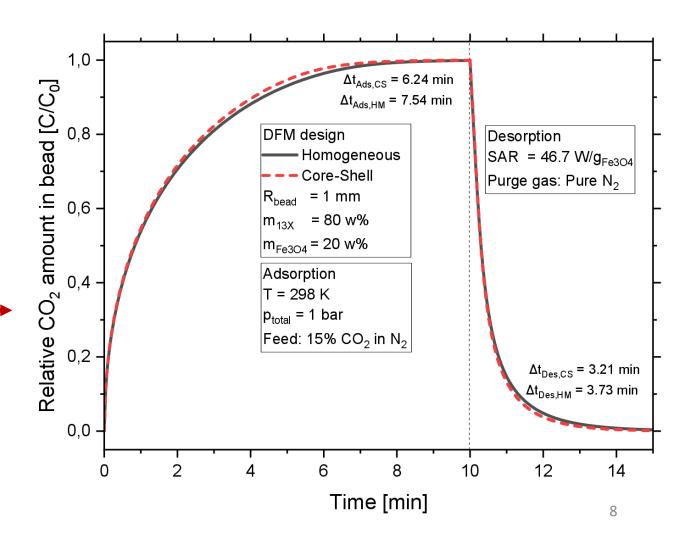


Boundary conditions

- 1D radial flux
- No flux at center
- Constant outer gas concentration
- Flexible outer temperature

Initital conditions

Mass and thermal equilibrium



Model verification

Temperature comparison with literature**

R_{bead}	$x_{Fe_3O_4}$	SAR W/g	$T_{reference}$	T_{model}
1 mm	10%	58.1	100°C	113°C
1 mm	10%	149.7	200°C	147°C
1 mm	20%	46.7	195°C	170°C
1 mm	20%	137.9	240°C	234°C

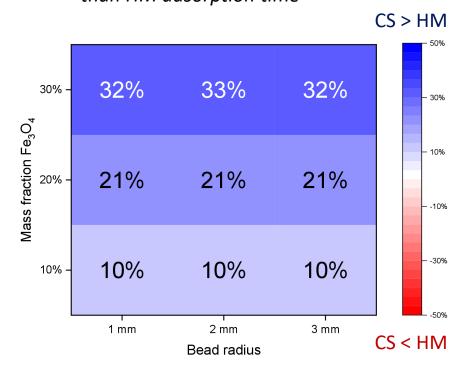
^{**}Gholami, M., Verougstraete, B., Vanoudenhoven, R., Baron, G. V., Van Assche, T., & Denayer, J. F. M. (2022). Induction heating as an alternative electrified heating method for carbon capture process. *Chemical Engineering Journal*, *431*. https://doi.org/10.1016/j.cej.2021.133380

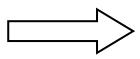
Parameter variation

Particle size and composition:

R_{Bead} 13X : Fe_3O_4	1 mm	2 mm	3 mm	
70:30				
80:20				
90:10				

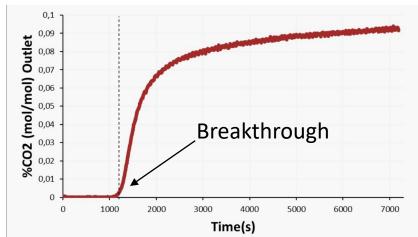
Desorption conditions:


$$SAR = 50 \frac{W}{g_{Fe_3o_4}}$$
$$= 100 \frac{W}{g_{Fe_3o_4}}$$
$$= 150 \frac{W}{g_{Fe_3o_4}}$$


"Variating of magnetic field strenght \overrightarrow{B} "

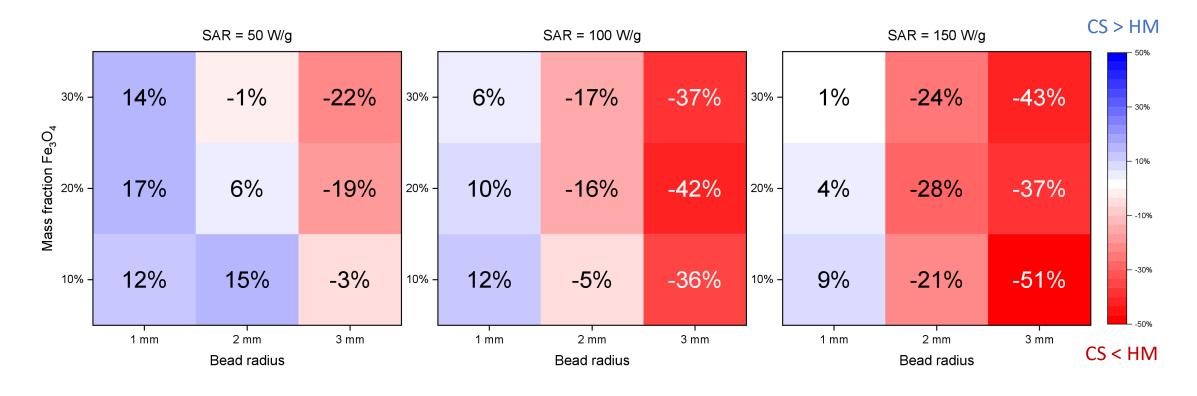
Comparison: Adsorption time CS vs. HM

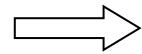
"CS adsorption time is XX% shorter/longer than HM adsorption time"



Shorter diffusion path of CS design affects positively the adsorption time

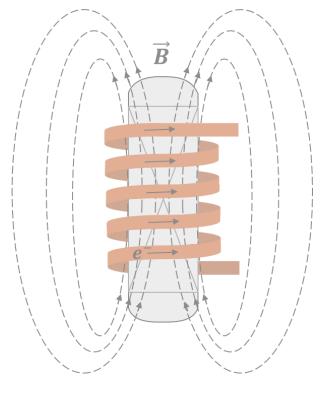
→ Can be beneficial for breakthrough curve

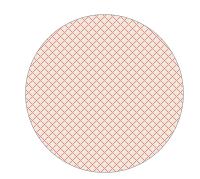

Example breakthrough curve:



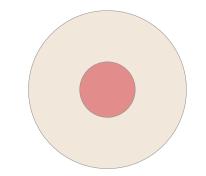
Comparison: Desorptiontime CS vs. HM

"CS desorption time is XX% shorter/longer than HM desorption time"




CS design only beneficial in smaller beads with "lower" SAR

→ Still desorption time fast (few minutes) and not the bottleneck of cycle time



Acknowledgements

This Project was funded by GESPA consolidated research group (2021 SGR 00321), RFC+PU(2021 BP 00029),

RE(F)CICLA (PID2023-149713OB-I00), funded by MICIU/AEI/10.13039/501100011033 and ERDF/EU.

