

Amine screening for oxidation by bench-scale experiments

James Obute, Tomoyuki Onomura, Gary Rochelle

Texas Carbon Management Program

The University of Texas at Austin

INPEX Corporation

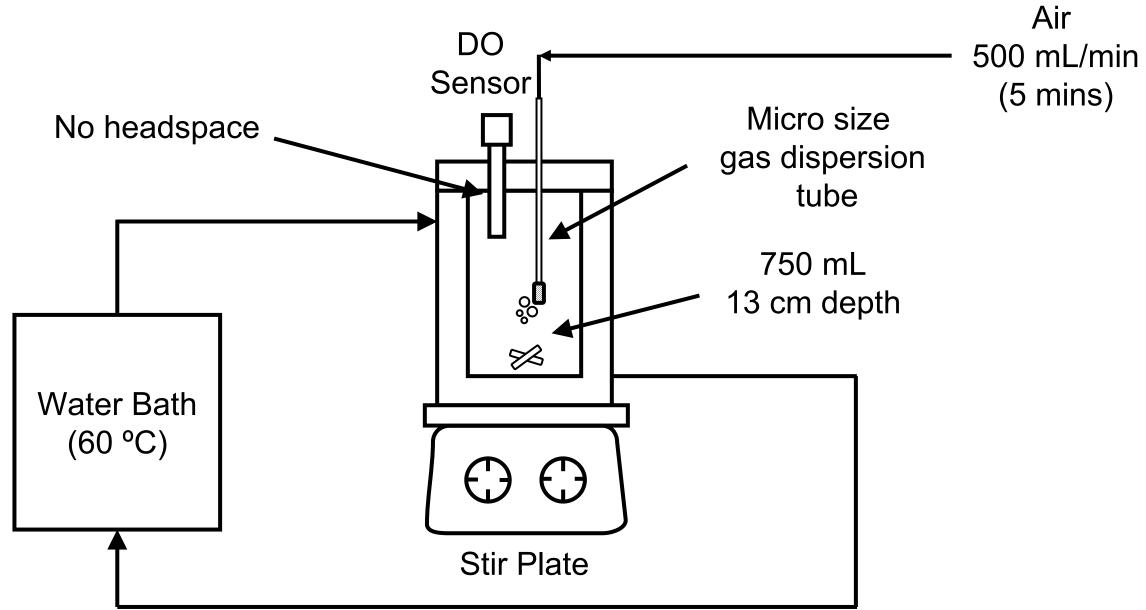
Introduction

- Amine solvents are key to post-combustion carbon capture (PCCC) technologies due to fast kinetics, high CO₂ capacity, and well-established process infrastructure.
- Oxidative degradation, mainly driven by dissolved oxygen (DO), raise concerns about the environmental consequences of long-term solvent use.
- Oxidation is mainly caused by three factors
 - > DO in the hotline to the stripper
 - ➤ Ferric ions (Fe³+) in the absorber that catalyze oxidation
 - > NO₂ in the flue gas
- Many of degradation products are toxic and difficult to manage.
- The ability to predict and mitigate oxidative degradation are critical for solvent development.

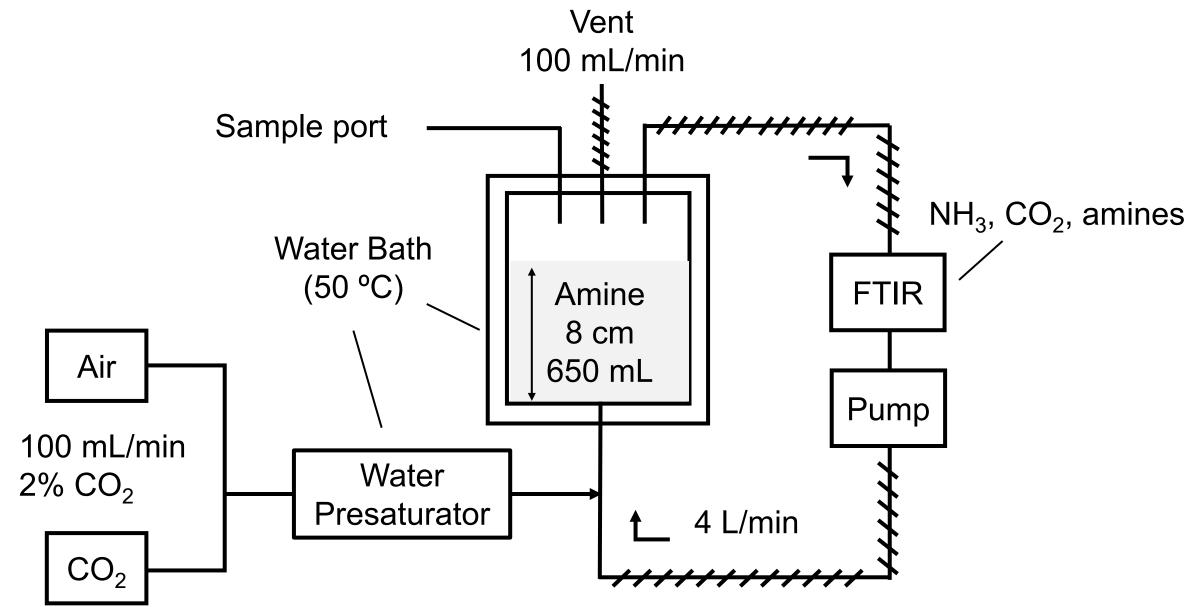
Previous screening studies

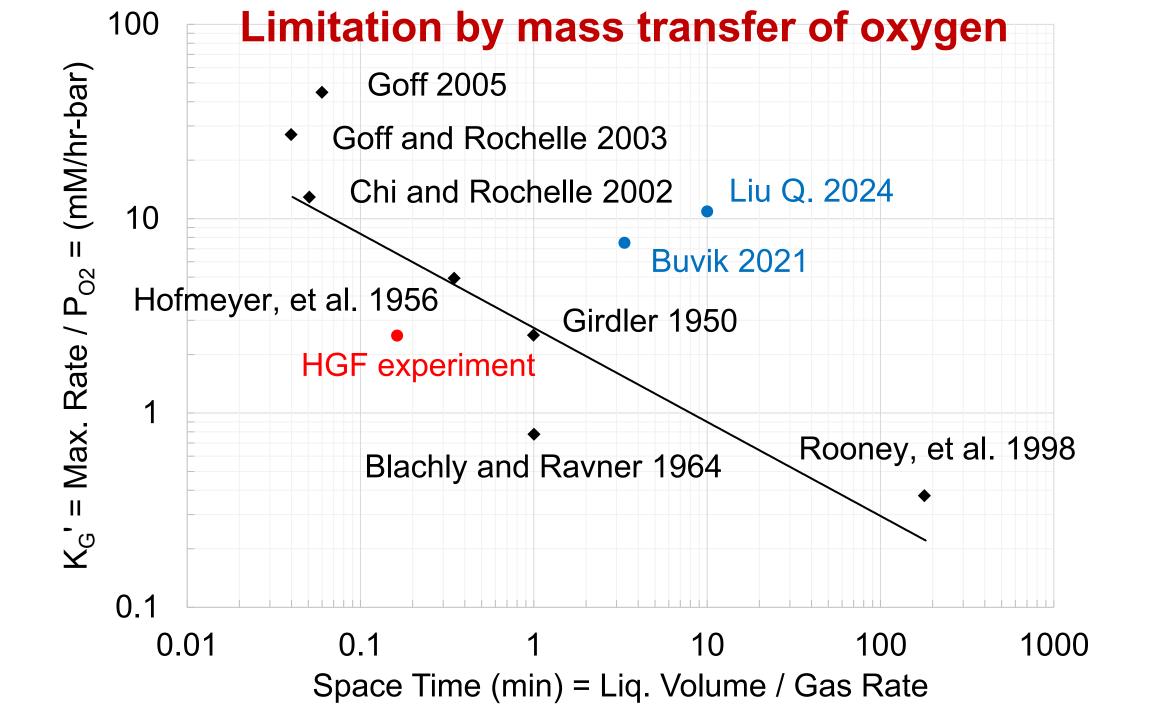
	Liu H. et al. (2015)	Buvik et al. (2021)	Liu Q. et al. (2024)
Number of amines	12	18	14
Duration (hours)	100	504	336
Amine (wt%)	30	30	4 or 5 mol/L
Volume (mL)	350	200	200
Gas flow rate (mL/min)	vortex	60	20

Common conditions; 60°C, 2% CO₂, 98% O₂ measured loss of amine, 0.4-0.5 mM Fe³⁺


Major findings

- Buvik: Strong structure—stability correlations: Limited conformational freedom, steric shielding, and reduced α-hydrogen availability decreased oxidation.
- Liu Q.: Oxidative stability increased with amine order and was further enhanced by steric hindrance.


Research Objectives


- ●Measure degradation rate at absorber conditions with Fe³⁺
- Based on two methods
 - Depletion of DO 5-60 minutes
 - ➤ NH₃ generation 5-10 days
- Measure 14 practical amines
- Compare results with previous work

Oxygen Depletion Batch Reactor (ODBR)

High Gas Flow reactor (HGF)

Comparison of methods

	ODBR	HGF	Liu H., 2015	Buvik, 2021	Liu Q., 2024
Criteria for oxidation	DO	NH ₃	Amine loss	Amine loss	Amine loss
Number of amines	14	14	12	18	14
Duration (hours)	3	50	100	504	336
O ₂ (vol%)	18	18	98	98	98
Fe ³⁺ (mM)	1	1	0.4	0.5	0.5 Fe ²⁺

Common conditions: 60°C, 30 wt% amine, 2% CO₂ Exceptions: Liu H. vortexed, Liu Q. 4 or 5 M, HGF 50°C ODBR and HGF include 6 amines not in previous work

Selection of amines

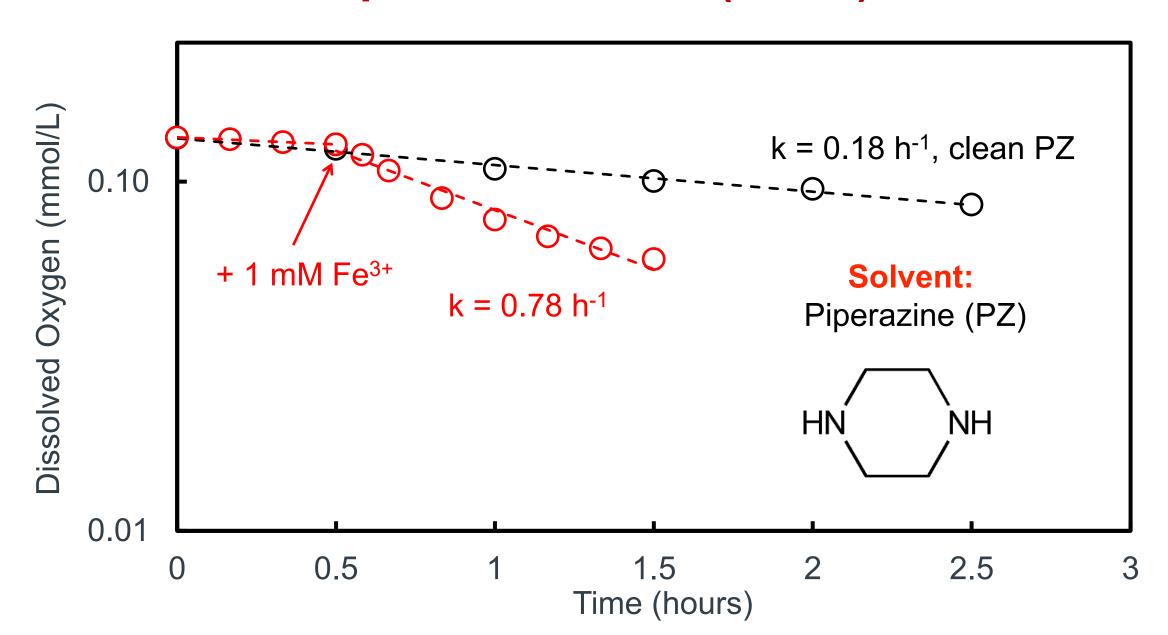
- 6 amines unreported for oxidation screening
 - ➤ CESAR1,

```
1-Methylpiperazine (1-MPZ), Hydroxyethylpiperazine (HEP) Diethylenetriamine (DETA), 1,3-Propanediamine (PDA) 1,6-Hexamethylenediamine (HMDA)
```

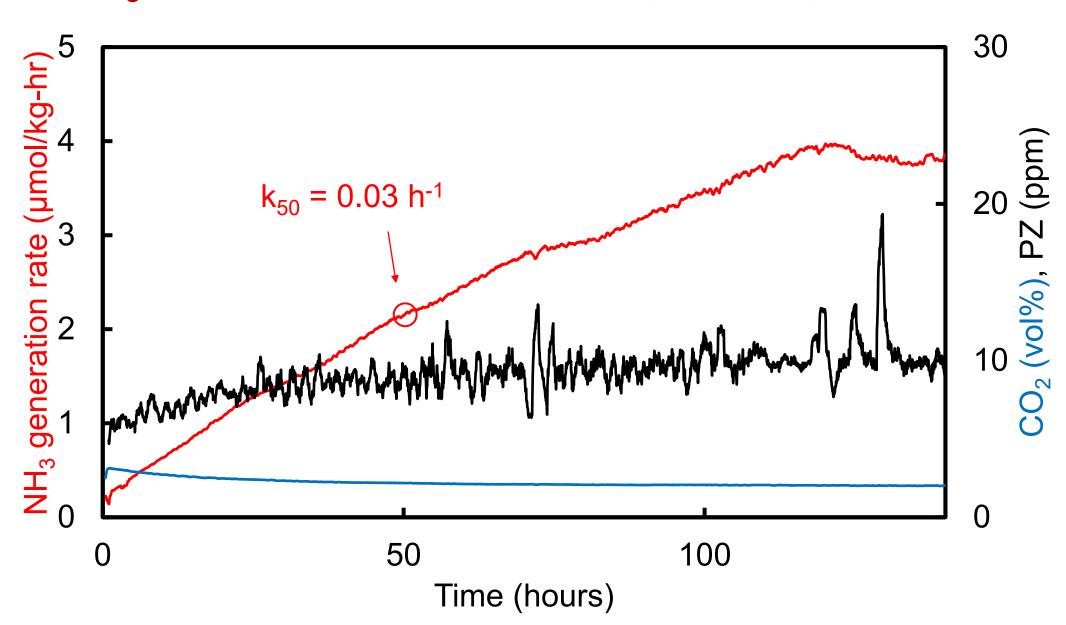
- 6 amines reported in one paper
 - Monoethanolamine (MEA), Piperazine (PZ) Aminomethylpropanol (AMP), Aminoethylpiperazine (AEP) Ethylenediamine (EDA), Methylaminopropylamine (MAPA)
- 2 amines reported in more than two papers
 - ➤ Monopropanolamine (MPA), Methyldiethanolamine (MDEA)

Rate constant for DO and NH₃

$$\frac{d[O_2]}{dt} = k_{DO} [O_2]$$
 (1)


- 1 mol of NH₃ will be generated during 3 mol of DO is consumed
- The DO concentration in HGF experiment is relatively constant at 4.8 mg/L

$$\frac{d[O_2]}{dt} = 3 \frac{d[NH_3]}{dt} \tag{2}$$


$$3 \frac{d[NH_3]}{dt} = k [O_2]$$
 (3)

$$k_{50} = \frac{3 \frac{d[NH_3]}{dt}_{50}}{[O_2]} \tag{4}$$

DO consumption in 5 m PZ (α=0.4) at 60 °C

NH_3 generation in 5 m PZ (α =0.34) at 50 °C

Summary of rates (1/2)		k _{DO} [h ⁻¹]	NH ₃ generation	Ratio
Amine	Structure	No Fe ³⁺	k ₅₀ [h ⁻¹]	$rac{k_{ m DO,\ No\ iron}}{k_{ m 50,\ HGF}}$
CESAR1	-	0.03	0.15	0.2
MPA	H_2N OH	0.12	0.35	0.3
1-MPZ	HN	0.16	0.14	1.2
PZ	HNNH	0.18	0.03	6.0
AMP	H_2N OH	0.18	0.10	1.8
HEP	HN NOH	0.28	0.28	1.0
MEA	H_2N OH	2.04	2.20	0.9

Summary of rates (2/2)		k _{DO} [h ⁻¹]	NH ₃ generation	Ratio
Amine	Structure	No Fe ³⁺	k ₅₀ [h ⁻¹]	$rac{k_{ m DO,\ No\ iron}}{k_{ m 50,\ HGF}}$
HMDA	H_2N NH_2	0.28	2.21	0.1
PDA	H_2N NH_2	0.5	0.53	0.9
EDA	H_2N NH_2	0.63	1.39	0.5
DETA	H_2N N NH_2	1.13	2.61	0.4
MAPA	N NH_2	1.59	3.54	0.4
AEP	$HN \longrightarrow N \longrightarrow NH_2$	1.65	0.28	5.9
MEA	H_2N OH	2.04	2.20	0.9

Criteri	a for oxidation	k _{DO, + 1 mM Fe3+}	k ₅₀	Amine loss	Amine loss	Amine loss
Amine	Structure	ODBR	HGF	Liu, 2015	Buvik, 2021	Liu, 2024
CESAR1	_	11	7	-	_	_
PZ	HNNH	17	1	-	2	-
MPA	H_2N OH	18	16	0	17	17
1-MPZ	HN	19	6	-	-	-
HMDA	H_2N NH_2	24	100	54	-	-
EDA	H_2N NH_2	43	63	45	_	_
MEA	H_2N OH	100	100	100	100	100
						14

Criter	a for oxidation	k _{DO, + 1 mM Fe3+}	k ₅₀	Amine loss	Amine loss	Amine loss
Amine	Structure	ODBR	HGF	Liu, 2015	Buvik, 2021	Liu, 2024
AMP	H ₂ N OH	47	4	_	6	8
AEP	HN N NH ₂	51	13	-	0	-
MAPA	N NH_2	60	161	-	60	-
HEP	HN	62	13	-	_	-
DETA	H_2N N NH_2	68	119	-	-	-
PDA	H_2N NH_2	70	24	0	-	-
MEA	H_2N OH	100	100	100	100	100
						15

Conclusion

- What amines are resistant to oxidation?
 - Unreported
 - Good: CESAR1, 1-MPZ
 - Bad: HEP, DETA
 - > Reported
 - Good: PZ, MPA, AMP
 - Bad: MAPA, PDA, MEA
 - Unclear: HMDA, EDA
- The results of ODBR method are consistent with previous research, thereby demonstrating a high level of reliability
- Although the results focusing on the NH₃ generation may not be optimal for evaluating general oxidation resistance, quantifying NH₃ production is critical for technical design. In this regard, the HGF method offers a distinct advantage by enabling accurate measurement of NH₃ output.

Thank You

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The authors declare the following competing financial interest(s): One author of this paper consults for a process supplier on the development of amine scrubbing technology. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research. One author also has financial interests in intellectual property owned by the University of Texas that includes ideas reported in this paper.