

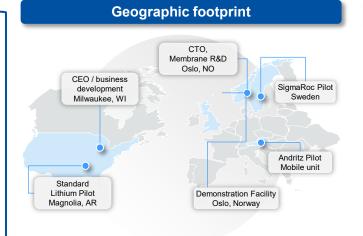
aqualung

Saravanan (Ram) Janakiram^a, Ricardo Wanderley^a, Luca Ansaloni^b, Vilde Andreassen^b, Mahdi Ahmadi^a, Maura Di Giovambattista^a, Thijs A. Peters^b

^a Aqualung Carbon Capture, Oslo, Høvik, Norway

b SINTEF Industry, Oslo, Norway

PCCC-8, Marseille


aqualung

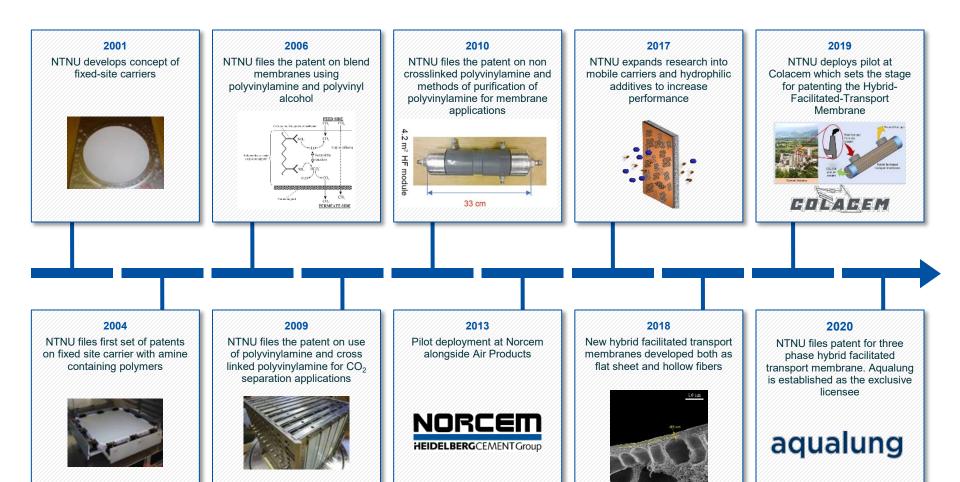
Aqualung at a glance

Unlocking cost-effective carbon capture across all industrial production

Company overview

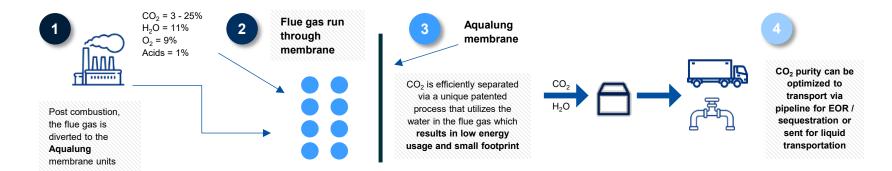
- Aqualung is a provider of a costeffective capture solution for a wide range of industrial emitters and fuel sources
- The Company's coated membranes utilize water vapor found within the flue gas to facilitate the movement of CO₂ across the membrane
- The membrane provides high CO₂ permeance and boosts CO₂ selectivity beyond standard solution diffusion membranes
- Aqualung will pursue multiple routes to market through CO₂ as a service
- Aqualung is backed by a strategic partnership with Denbury (ExxonMobil post acquisition close) the largest CO₂ pipeline operator in the world

Key partnerships to date

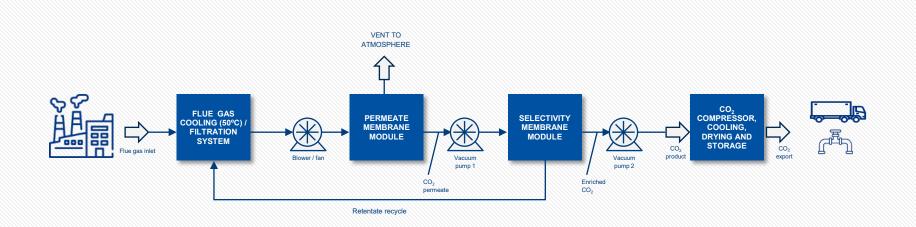



Notes: (1) Based on 9mtpa commercialized project pipeline

20+ years of R&D at NTNU to develop a breakthrough membrane © NTNU CO₂ capture technology


Aqualung technical solution – overview

The Aqualung solution visualized in detail


Hybrid facilitated transport membrane

- Base polymer Facilitated transport membrane material enables thin coatings
- Mobile carriers boosters for flux, fine-tuning amines
- Graphene oxide stability, durability and water management

Aqualung stand-alone process flow at a glance

2-stage process flow diagram – simplicity drives down OpEx and CapEx

Key process highlights

- Low pre-treatment processes (cooling, filtering, no need for dehydration)
- ➤ The first stage is a permeance membrane used to set the overall capture rate ➤ (~90% capture rate)
- ➤ The second stage is a selectivity membrane used to set the CO₂ purity (~95%+ purity)
- ➤ Vacuum pumps facilitate low driving force across both membrane stages
- > Process consists of multiple membrane modules operating in parallel stages
- CO₂ purity can be optimized for transport for EOR / sequestration / utilization

Unique technology proposition ready for industrial deployment

Standard Lithium Pilot

Overview:

- Rated to 1,000tpa from gas fired boiler at 2%-4% CO₂ concentration
- 640 sq meters membrane capacity
- Operated in Arkansas with Standard Lithium on Mission Creek's NGL processing plant

Pilot objectives:

- Provide capture rate >50% from low CO₂ source
- Concentrate to >40% in two stages (>95% in three)
- Develop ready-for-market solution by 2026-2027
- Operating since March 2023

SigmaRoc Pilot

Overview:

- Rated to 1,400tpa from lime kiln emission in Sweden at ~16% CO₂ concentration
- 288 sq meters membrane capacity

Pilot objectives:

- Prove the two-stage system (90% capture and 95% purity for high CO₂ cases)
- Demonstrate 95% purity under low feed-pressures (<0.2 bar gage)
- Develop ready-for market lime solution by 2025
- Operating since June 2023

Demonstration Facility

Overview:

- Test membrane performance with synthetic gas and diesel / LPG engine
- Single stage multi variable testing
- 25 sq meters membrane capacity

Pilot objectives:

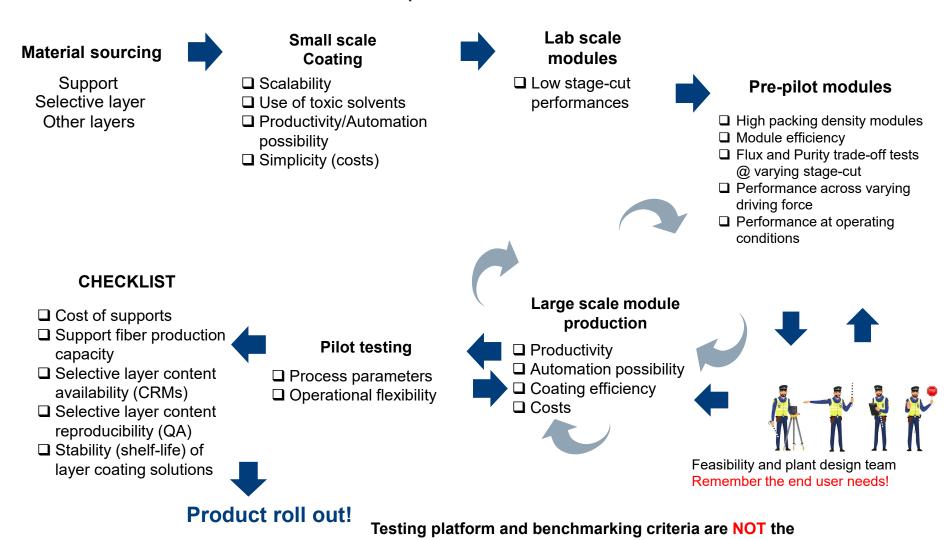
- Optimize membrane design for full range of cases
- Fully benchmark all operating parameters
- Intermediate step before pilot deployment
- Operating since February 2024

Andritz Mobile Unit

- CO₂ capture rate of 170-240tpa multiple cases defined such as pulp & paper, waste-to energy at 5%-15% CO₂ concentration
- 96 sq meters membrane capacity

Pilot objectives:

- Prove two-stage system (>90% capture rate and 95% purity) for intermediate CO₂ sources
- Develop ready-for-market waste-to-energy solution by 2025-2026
- Delivery slated for 3Q 2024


Key project deployment highlights:

- Skid construction time less than 8 weeks
- Full installation CAPEX less than \$1,000,000USD for each project

- Proof of concept for scale-independent design
- Fast commissioning from delivery on-site to flue gas ops in <2 weeks</p>

Journey to Large-scale modules production and relevant checklist

Both counter current flow and humidification is required

same!

aqualung

Current pilots in US and Sweden

March 2023 1900 kg/h 3-5% CO₂ Requirement >60%

Our journey at the pilots

Membranes

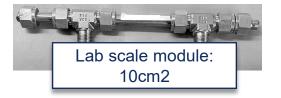
- Parker modules Air separation (high pressure applications)
- PPO hollow fibers
- Coated insitu with techniques developed inhouse

Highlights

- 2 stage operation with membranes under 1.2 bar feed pressure on the flue gas
- Facilitated transport at industrial scale with humidity control
- High purity in Nordkalk (98 vol% from 14 vol%)
- High up concentration in SLI (32 vol% from 2-3 vol%)
- Membrane stability despite significant process disturbances

Plant

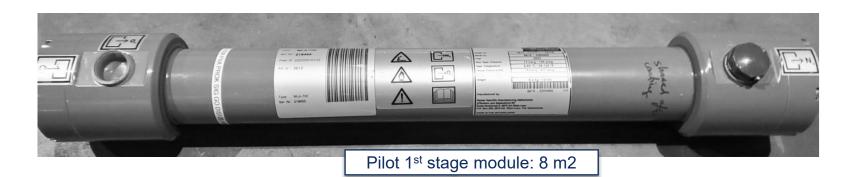
- 2-stage system with recycle
- Minimal pretreatment changes

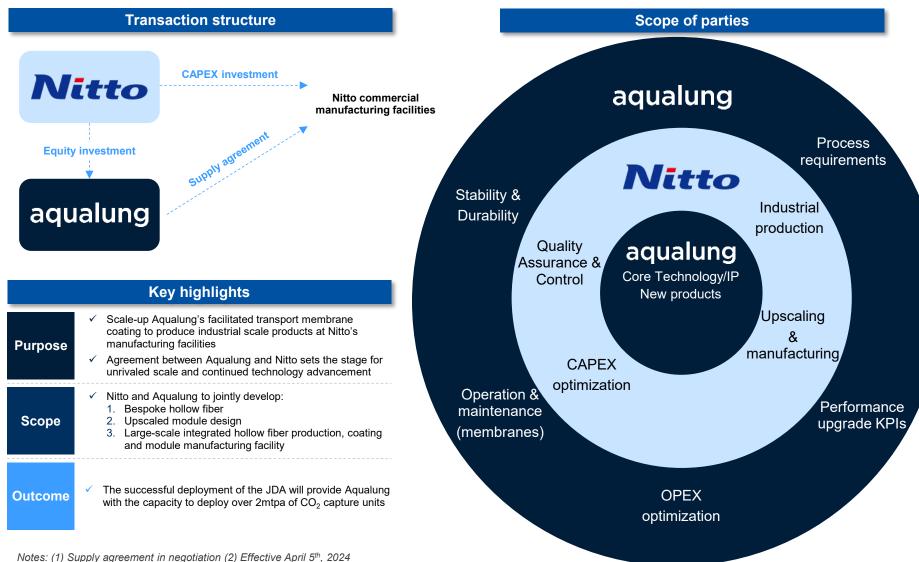


Issues and takeaways

- Process uptime site specific disruptions
- Low capture rate (10-20% at each stage) low membrane throughput
- Membrane limitations
 - Flux
 - Operational temperature
- Results have fed back into the membrane development
- Process upgrades implemented on site and fed into nextgendesign

Technology Scale Up various module designs


The combination of commercial and bespoke modules (developed specifically for CO₂ separation by Aqualung and their technical partners) is key to optimising and scaling up the technology; unlocking deployment onto larger emission sources.



Aqualung – Joint Development Agreement

JDA –custom-designed membranes with commercial production capacity

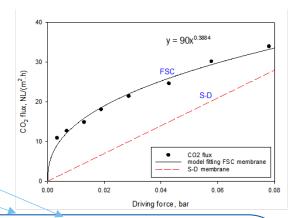
Evolution of membrane solutions

Work alongside Nitto for a competitive product

Most important metrics that define the membrane stage competitiveness

CO₂ flux

CO₂ purity


Gas processing efficiency

CO₂ flux = (Permeability / thickness) x driving force

 CO_2 flux = (S x D/thickness) x driving force

CO₂ flux = (S x D/thickness) x driving force +FT component x driving force x<1

Solution diffusion Facilitated transport

Selective layer

- Polymer + amine chemistries
- Reactive Permeance and selectivity
- Temperature vs CO₂ flux effects

 $FT = f(T, X_{NH2}, RH)$

aqualung

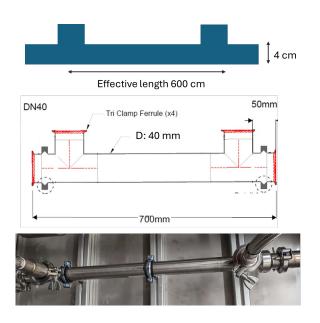
Fiber + coating

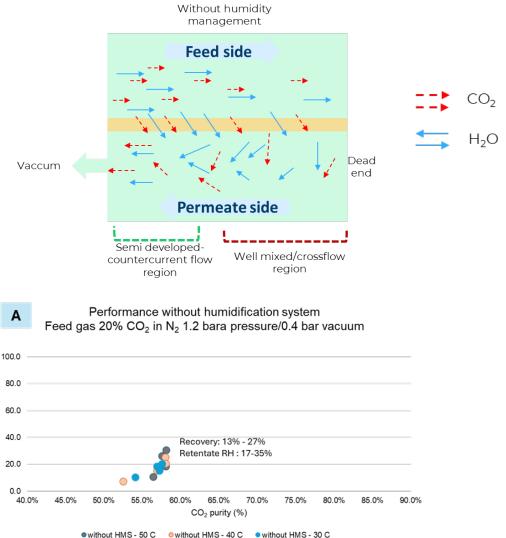
- · Quality at scale
- Minimum thickness (maximizing permeance)
- Fiber that is designed for purpose

Module + Process

- Low pressure module design
- Maximizing facilitated transport effect – temperature control
- Water management

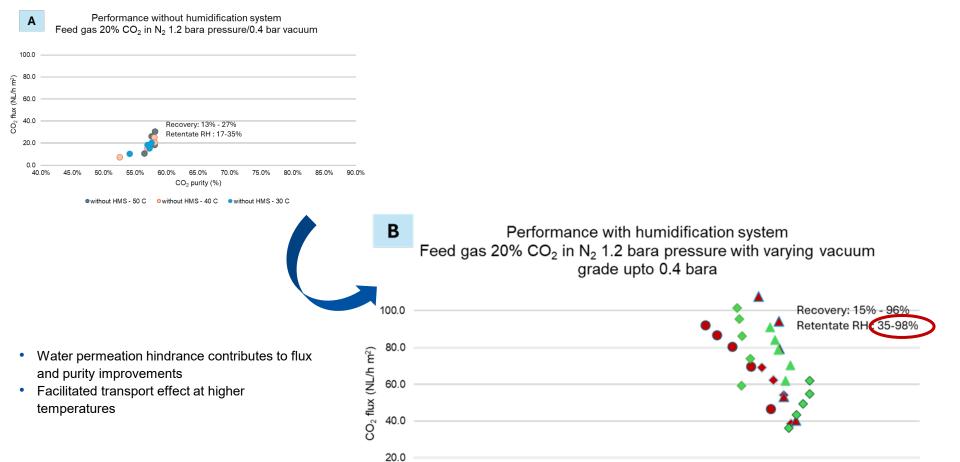
Favorable process conditions




Module and flow limitations for humidity management and recovery

CO₂ flux (NL/h m²)

Both counter current flow and humidification is required



- Gen 2 modules designed for high T operation
- Higher temperatures preferred for FT effects
- RH management challenging at high T

Performance of Gen2 modules for high CO₂ concentration (single stage)

Increasing temperature - effects of RH

0.0 —

45.0%

50.0%

55.0%

60.0%

with HMS 70 C

65.0%

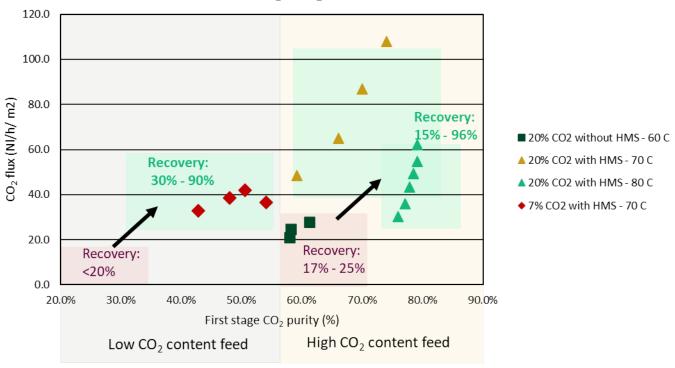
CO₂ purity (%)

70.0%

75.0%

with HMS 80 C

85.0%


90.0%

80.0%

Performance of Gen2 modules for low & high CO₂ concentration

Use of HMS enables high temperature operation – maximizing facilitated transport

Performance improvements with and without humidification system Feed gas 7% and 20% CO_2 in N_2 1.2 bara pressure/0.2 bar vacuum

Update on pilot performance

Pilot overview

- ✓ Aqualung has proven the recovery, purity, and commercial viability of its technology through four operational test and pilot facilities
- ✓ The Company continues to apply operating learnings to optimize design for both low and high-concentration sources
- ✓ Results demonstrate clear progress towards commerciality with line of sight to significant scale

Test campaign summary, high CO₂ feed (20%)

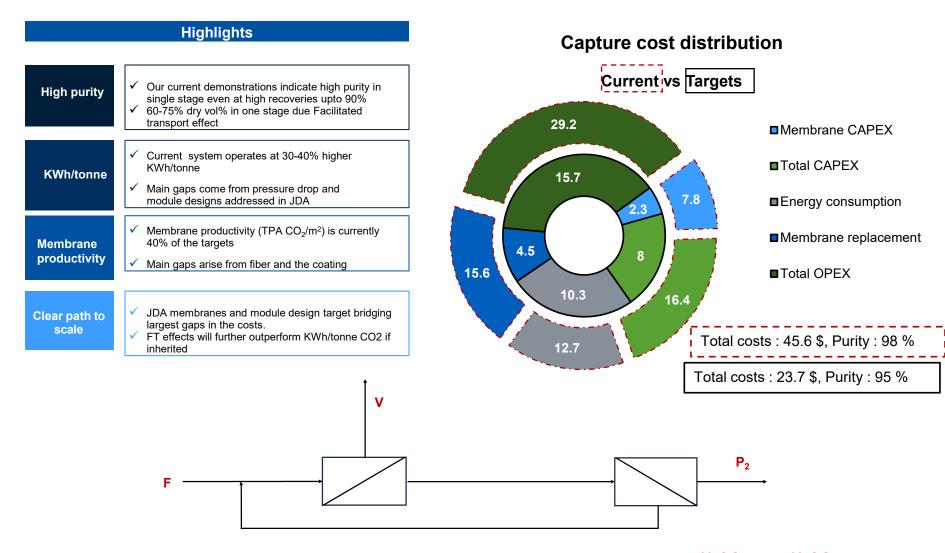
Recovery	Dry feed CO ₂ comp (%)	1 st stage CO ₂ dry purity (%)	TPA / m²	kWh / t (2-stage system to >95% purity)
50%-60%	20	73	1.20	232
70%-80%	20	69	1.60	257
90%+	20	59	0.80	263

Achievements

99% maximum recovery

97%

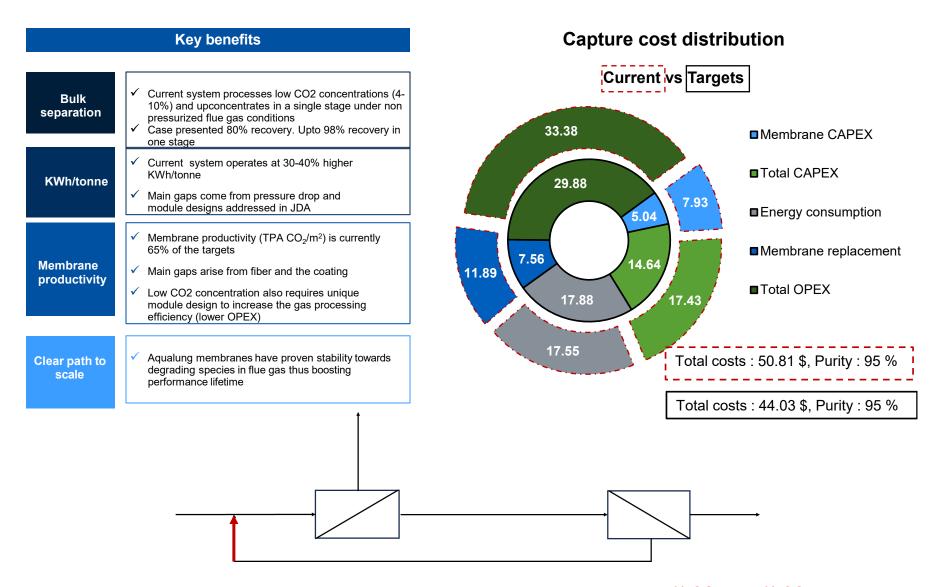
maximum 2nd stage purity


Test campaign summary, low CO₂ feed (7%)

Recovery	Dry feed CO₂ comp (%)	1 st stage CO ₂ dry purity (%)	TPA / m²	kWh / t (2-stage system to >95% purity)
50%-60%	7	~55%	0.70	381
70%-80%	7	~43%	0.60	389
90%+	7	~33%	0.45	420

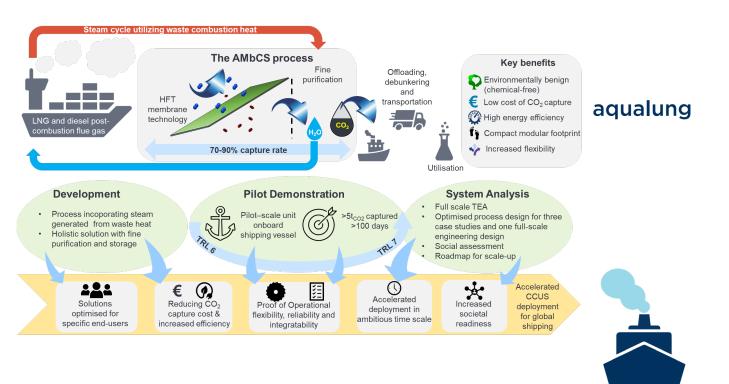
agualung

- The pilots have shown purity and how proper gas distribution and inlet condition control can be achieved at scale
- Demo rig operations to date shows how the individual module, without much amendment, can be made to perform properly in a facilitated transport membrane
- These data points together provide a powerful proof of scale, and feeds further into the JDA upscaling work with Nitto Denko


High CO₂ concentration case capture solution - Current pilot demonstration and JDA targets

Two-stage process operating at 1.2 bara/0.2 to 0.4 bara vacuum 15-20% CO₂ to 95% CO₂

Low CO₂ concentration cases – Status update


- Current pilot demonstration and JDA targets

Two-stage process operating at 1.2 bara/0.2 to 0.4 bara vacuum 5-7% CO₂ to 95% CO₂

Upcoming pilots

CETP – AMbCS project

Advanced Membrane-based solutions for CCUS in Shipping

AMbCS

Acknowledgements

CETP project, 348564

