

Transforming Mine Waste into Carbon Sinks: Extracting Magnesium for CO₂
Mineralization

By: Haftom Weldekidan

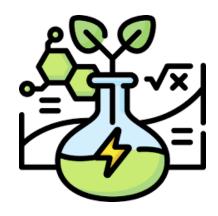
Team: Dia Milani, Robbie McDonald, Phillip Fawell, Graeme Puxty,

Phil Green, Paul Feron, Nouman Mirza, and Tara Hosseini

Contents

- CSIRO
- SIMiDAC team
- Background
- Tailings composition
- Metal extraction process routes
- Experimental results
- Solar integration
- Conclusion

CSIRO



- 49 sites in Australia and two sites overseas
- 5,672 people
- Over 4,000 industry and government partners
- 1,600 small and medium businesses (SMEs)

Mineral resources RU:

- Leading research in mineral extraction and beneficiation
- Delivering innovation for the mining industry

Energy RU:

- Leading research in energy transformation and carbon management
- Advancing CCUS technologies towards NZE targets

3 |

SIMiDAC Team - Acknowledgment

Dr Paul Feron - Energy RU

Amine development and commercialisation

Direct air capture and integrated CO₂ utilisation

· Science lead and mentorship

Dr Haftom Weldekidan - Mineral Resources RU

- CERC fellow from Macquarie university
- 2 years work experience at the Uni of Guelph -Canada
- Expertise in solar fuels and hydrogen

Dr Robbie McDonald - Mineral Resources RU

- Lead of the experimental program
- Expert in hydrometallurgy and mineral characterisation
- HSE and operation safety

Dr Nouman Mirza - Energy RU

- Solvent development chemist
- Catalysis chemistry
- Experience with pilot plant operation

Dr Dia Milani - Energy RU

- Process simulation, integration, and optimisation
- Solar field and energy storage design and sizing
- Project liaison and management

Dr Phillip Fawell - Mineral Resources RU

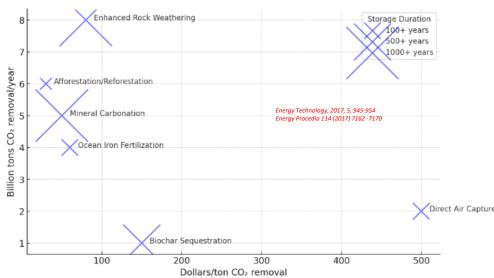
- · Experience with tailings circuits
- Focus on physical properties of suspensions
- Industry connections

Dr Graeme Puxty – Energy RU

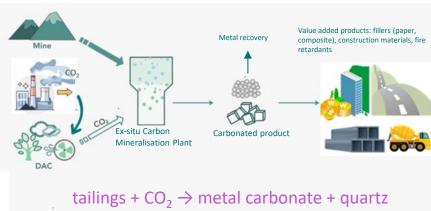
- Lead scientist on absorption liquid development
- Experience in chemical and physical processes for CO₂ separation
- Focus on novel process integrations

Dr Tara Hosseini- Energy RU

- Lead scientist on electrochemical energy systems
- Experience in technoeconomic and LCA
- Focus on mineral processing technologies



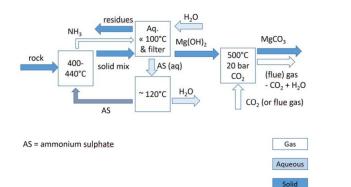
Background

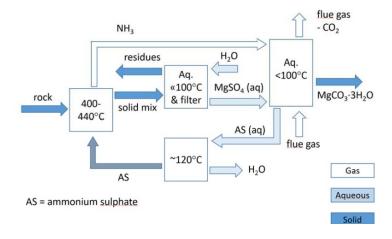

- 38 billion tonnes of CO₂ emission in 2024
- Atmospheric CO₂ has hit 430 ppm highest in millions of years
- Main sources: energy sector (75%); transportation and industry (steel, cement and chemical production)

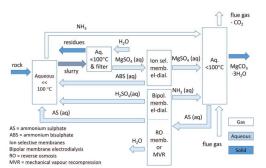
Source (IEA, 2024 report)

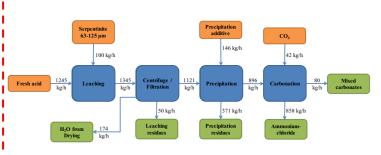
CO₂ sequestration technologies

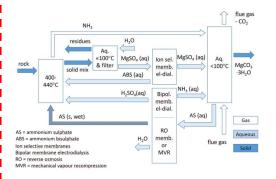
Accelerated mineral carbonation (AMC)

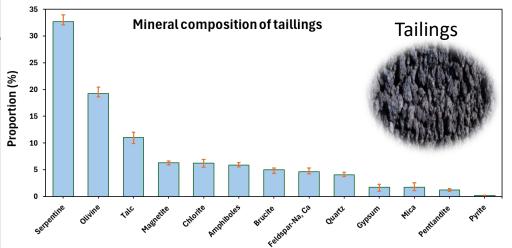

Why mineral carbonation?


- Mineral carbonation occurs in nature
- Challenges: the natural process is slow!
- AMC:
- Faster
- Wide availability/cheaper raw materials, can store
 3700 Mt/year CO₂
- Potential recovery of critical minerals
- Energy intensive, costly, difficult to recycle reagents




OFFICIAL


AMC process routes



22)

Tailings compositions

- Obtained from an Australian mining site
- Characterised with QXRD, SEM, ICP
- Identified around 13 minerals
- Tailings rich in serpentine and olivine
- Has high concentration of Mg (~20%)

Composition of the tailings, wt.%														
SiO ₂	MgO	CaO	Al ₂ O ₃	Cr ₂ O ₃	Fe ₂ O ₃	K ₂ O	Mn ₃ O ₄	Na ₂ O	NiO	SO ₃	Cl	Other	LOF	Total
37.1	33.2	1.5	2.2	0.3	11.4	0.3	0.1	1.2	0.8	3.4	0.9	2	7.2	100

OFFICIAL

AMC – Roasting

Leading research institutes:

UoN UdG

ASU

NETL

UoQ

ETH

NHW

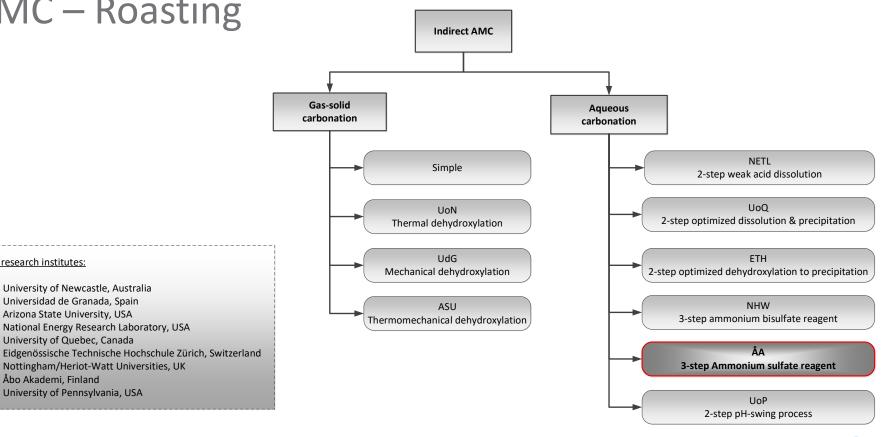
ÅA

UoP

University of Newcastle, Australia

National Energy Research Laboratory, USA

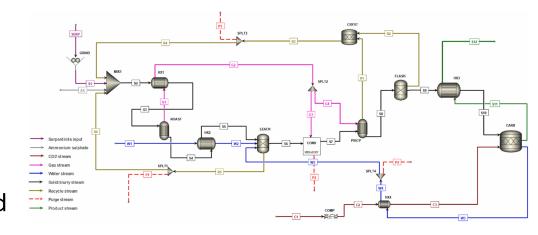
Nottingham/Heriot-Watt Universities, UK


Universidad de Granada, Spain

Arizona State University, USA

University of Quebec, Canada

University of Pennsylvania, USA


Åbo Akademi, Finland

Roasting process model

- Modelling was done using aspen plus and is based on the Åbo Akademi (ÅA) Conventional Carbonation process routes.
- Model shows processes for extracting magnesium by roasting magnesium rich-tailings at 400 °C.
- Ammonium sulfate was considered as a reagent.

Model optimized results

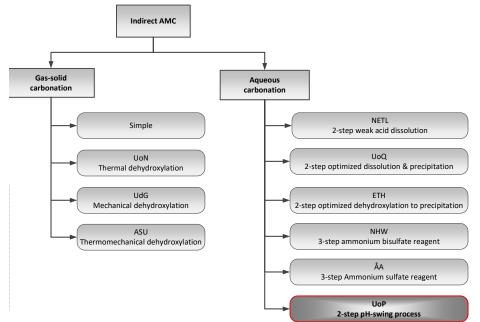
Parameters	Roasting	unit	Ref.
Magnesium Extraction	85	%	Aspen plus
Energy demand for grinding	1	MJ/kg MgCO ₃	Aspen plus
Particle size	<80	um	Aspen plus
Water usage	0.5	Kg _{H2O} /kg MgCO ₃	Aspen plus
Heat demand	22	MJ/kg MgCO ₃	Aspen plus & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Heat recovery from leaching	11	MJ/kg MgCO ₃	Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Heat recovery from carbonation	6	MJ/kg MgCO ₃	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Recycling (ammonium sulfate)	0.5	MJ/kg MgCO ₃	Aspen plus
CO ₂ -to-product ratio	0.6	Kg _{CO2} /kg MgCO ₃	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
CO ₂ conversion rate	85	%	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
CO ₂ emission reduction	69	kt _{cO2} /year	Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025

- Optimized process parameters including water usage, particle distribution and temperature.
- > Evaluated:
 - Energy required for roasting, leaching and energy required to recycle used reagents.
 - Energy generated carbonating the Mg(OH)₂.
- Analyzed the carbon footprint of the whole process (roasting, leaching and carbonation processes).

Roasting the tailings

- Temperature 400 °C
- Roasting time 3 hours
- Reagent used ammonium sulfate (tailings: ammonium sulfate =1:3)
- Tailings particle sizes considered 25 to 110 μm

Metal extraction							
PSD, μm	Mg %	Fe %	Ni %	Si %	Al %		
<25	89	28	91	11	57		
<80	83	27	81	12	45		
<110	70	24	75	5	41		


- Formed efremovite ((NH₄)₂Mg₂(SO₄)₃) and sabieite (NH₄Fe(SO₄)₂)
- Almost all serpentine and significant amount of olivine decomposed
- Quartz, actinolite and talc remained

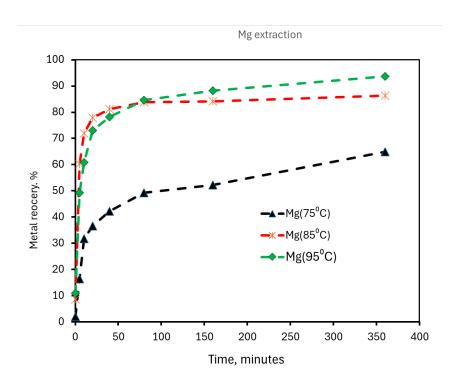
AMC -pH swing (leaching)

Roasting:


- Requires high temperature.
- Extraction is low unless tailings is finely ground.
- Is energy intensive.
- These limitations prompted alternative approach – pH swing (acid leaching) to explore more efficient extraction pathways.

pH-Swing modelling

Acid leaching: - Sulfuric acid, stoichiometric amount, Ambient temperature and pressure



Model optimized results

Parameters	Roasting	pH swing	unit	Ref.
Magnesium Extraction	70	90	%	Aspen plus
Energy demand for grinding	1	0	MJ/kg MgCO ₃	Aspen plus
Particle size	<110	<110	um	Aspen plus
Water usage	0.5	1	Kg _{H2O} /kg MgCO ₃	Aspen plus
Heat demand	22	2	MJ/kg MgCO ₃	Aspen plus & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Heat recovery from leaching	11		MJ/kg MgCO ₃	Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Heat recovery from carbonation	6	6	MJ/kg MgCO ₃	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
Recycling (ammonium sulfate)	0.5	0.5	MJ/kg MgCO ₃	Aspen plus
CO ₂ -to-product ratio	0.6		Kg _{CO2} /kg MgCO ₃	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
CO ₂ conversion rate	85	90	%	Aspen & Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025
CO ₂ emission reduction	69		kt _{co2} /year	Milani et.al., Cleaner Eng. Tech. Vol. 26, 2025

Leaching test

- Sulfuric acid (acid: tailings =1)
- Pulp density 20 %, atmospheric leaching
- Temperatures considered, 75 to 95°C
- All the olivine and lizardite decomposed
- Chlorite and quartz left undecomposed
- Magnesium extraction above 90 %

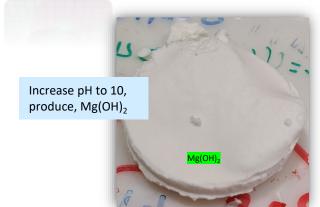
OFFICIAL

pH adjustment for Mg-rich liquor

Added H₂O₂ to oxidise ferrous to ferric

• Increased pH to 4.3 with NH3

• Precipitated almost all the irons



Raising the pH to 8.5
Precipitated Ni

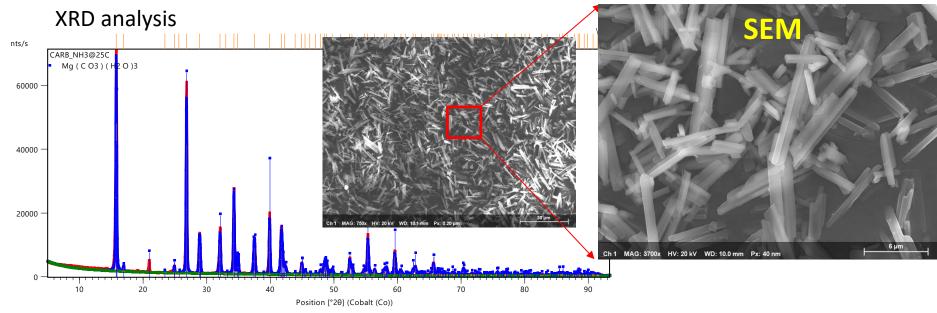
Mg-rich stream for carbonation

	Conc. Mg/L		
Fe	Mg	Ni	pН
4.07	29800	158	4
>1.0	30300	154	7
>1.0	30200	43.1	8.5
>1.0	23300	>1	9.3

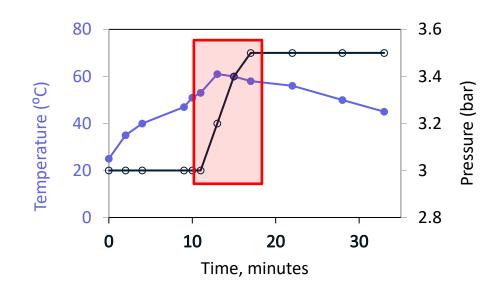
BET surface area, m2/g	Average pore diameter, Å	Pore width, Å
30	151	343

Carbonating Mg-rich streams

- In a closed vessel reactor
- Added stoichiometric amount of NH₃ solution
- pH >8, room temperature
- CO₂ gas injected at 150 cc/min



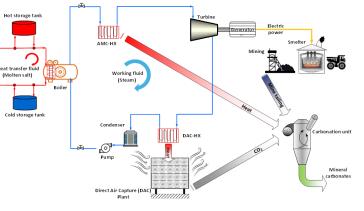
Carbonation


- XRD confirms conversation to Nesquehonite (MgCO₃.3H₂O)
- Complete conversion of Mg into MgCO₃.3H₂O
- SEM confirms morphology of the product

$$MgSO_4(aq) + 2NH_3 + 4H_2O + CO_2(g) \rightarrow MgCO_3.3H_2O + 2(NH_4)_2SO_4(aq)$$

Temperature and pressure profiles

- Temperature increased to 61°C, then started to decrease.
- Indicating the end of carbonation reaction.
- Only 13 minutes to convert all the Mg to MgCO₃.3H₂O.
- Consistent with the temperature, the pressure also started to build up from 11 minutes.



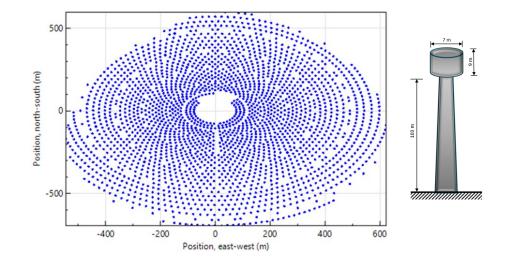
Solar integration

 Process Flow: CST (Concentrating solar techno.) → Boiler → AMC-HX → Turbine → DAC-HX

- Key Components:
- CST system: Delivers thermal energy
- HTF (heating transferring fluid): Molten salt (60% NaNO₃, 40% KNO₃)
- AMC: Mineral carbonation for CO₂ sequestration
- DAC: CO₂ capture from the atmosphere
- Rankine Cycle: For electricity generation

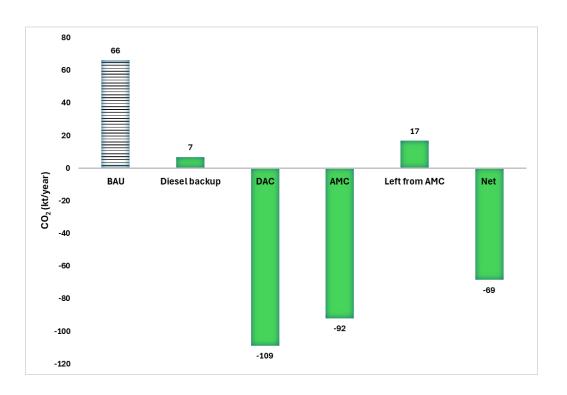
Solar system sizing – CST and TES

- Sizing was done using the NREL based System Advisor Model (SAM).
- CST was designed to deliver 20 MWe.
- Includes a 10-hour thermal energy storage (TES) system to meet nominal loads over the year.
- 50% of this for mining and auxiliary loads on site.
- Remaining (50%) for AMC and DAC operation.


Sizing

Land area for the CST: 1.3 km²

• Heliostats: 2411 units


• Tower height: 103 m

Receiver: 9 m height, 7 m diameter

GHG Emissions Reduction

Business As Usual (BAU)

- CO₂ emission is 66 kt CO₂/year
- Diesel consumption 24 million L/year

With CST

- Produce 176 kt/year carbonates locking
 92 kt/year of atmospheric CO₂
- Generate 10 MW electricity (turbine),
- 10.7 MJ/kg for CO₂ production in DAC
- AMC generates 5.8 MJ net heat/kg carbonate products produced
- Diesel backup consumption reduced to only 2.5 million L/year
- Avoiding further 69 kt/year CO₂ (negative emissions)
- The total CO₂ avoidance is 204%

Conclusion

- Roasting of Mg-rich tailings using ammonium sulfate at 400°C enables partial Mg extraction but is energy intensive and requires fine grinding.
- pH swing using sulfuric acid offer a low-temperature alternative with higher Mg extraction (>90%) and simpler process conditions.
- Carbonation of Mg-rich streams produces nesquehonite (MgCO₃·3H₂O)
- Solar thermal integration enhances process sustainability and reduces GHG emissions.

A big thank you and acknowledgment to CSIRO, CarbonLock FSP & SIMiDAC-FS Team

Thank you

Haftom Weldekidan CERC postdoc, Mineral Resources +61 451 382 871 haftom.weldekidan@csiro.au

