ONTNU

Norwegian University of Science and Technology

The progress in solvent-based CO₂ capture in the last decade

Electricity and heat production

- Hard coal
- Biomass
- Lignite
- Natural gas

Synthetic gas / propane

Industrial

- Cement Kiln
- Steeel/Blast furnace
- Silicon production

Waste-to-Energy

Measurement of process performance (SRD)

Operability and long-term performance

International Journal of Greenhouse Gas Control

Volume 126, June 2023, 103894

Conclusions from 3 years of continuous capture plant operation without exchange of the AMP/PZ-based solvent at Niederaussem – insights into solvent degradation management

Peter Moser ^a △ ☒, Georg Wiechers ^a,

Roberta Veronezi Figueiredo ^b, Eirini Sky

Juliana Garcia Moretz-Sohn Monteiro ^b

International Journal of Greenhouse Gas Control

Volume 95, April 2020, 102945

Results of the 18-month test with MEA at the post-combustion capture pilot plant at Niederaussem – new impetus to solvent management, emissions and dynamic behaviour

Peter Moser ^a ♀ ☒, Georg Wiechers ^a, Sandra Schmidt ^a,

Juliana Garcia Moretz-Sohn Monteiro ^b, Charithea Charalambous ^c, Susana Garcia
^c, Eva Sanchez Fernandez ^c

Measurement of process performance (SRD)

Operability and long-term performance

Solvent management studies

Operational issues possible caused by solvent degradation

Foaming

Loss of capture

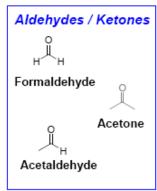
Increased energy consumption

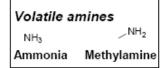
Corrosion / fouling

Possible environmental / HSE issues

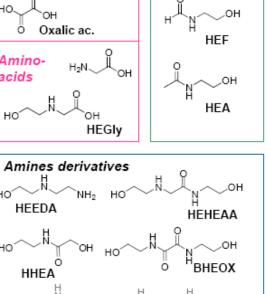
Emission of harmful compounds

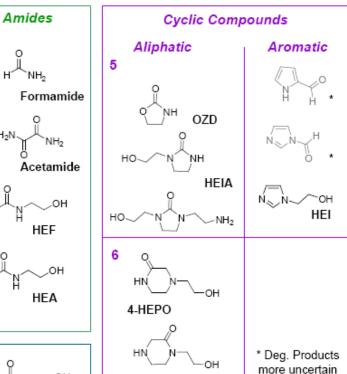
Handling of solvent


Waste treatment

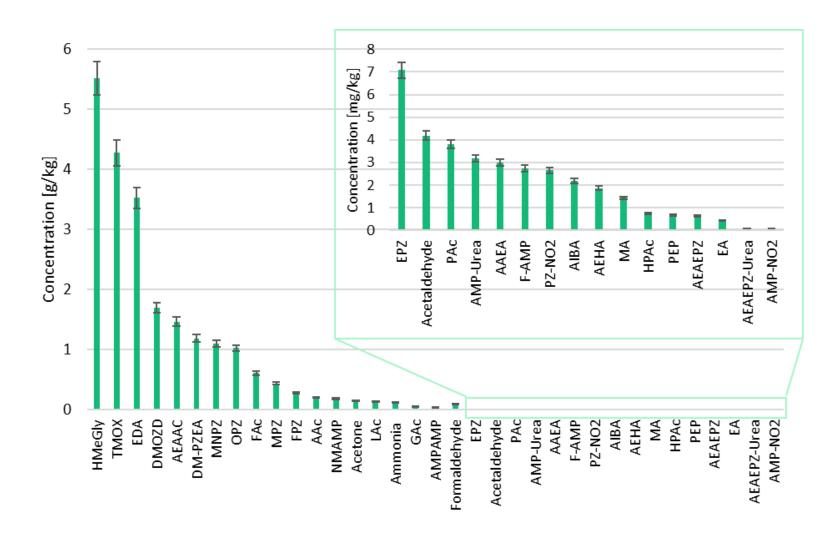


Spill/leakages of harmful compounds

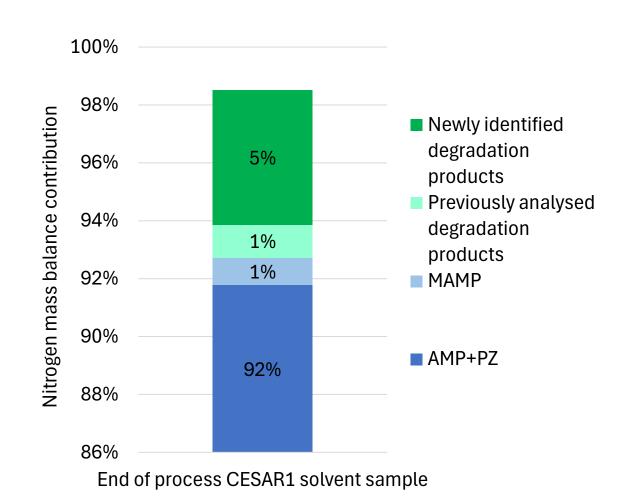



Closing the nitrogen balance

MMEA



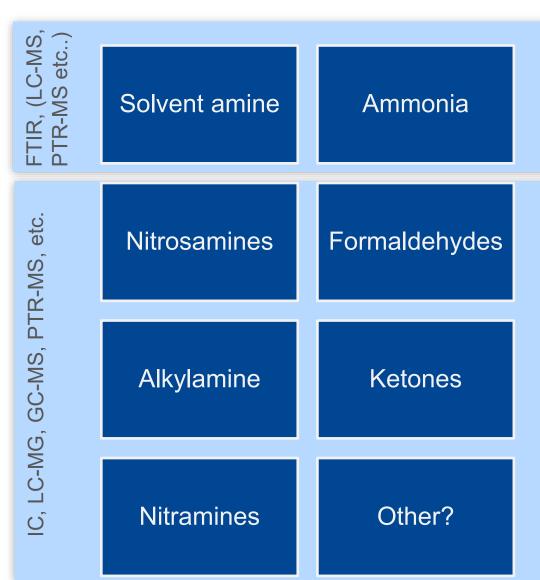
2-HEPO



Closing the nitrogen balance

Closing the nitrogen balance

- Optimisation of operational conditions
- Flue gas pretreatment
- Solvent reclamation
 - Online monitoring of solvent degradation

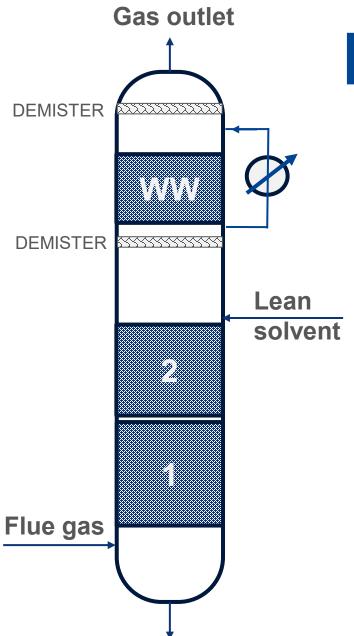


Measurement of process performance (SRD)

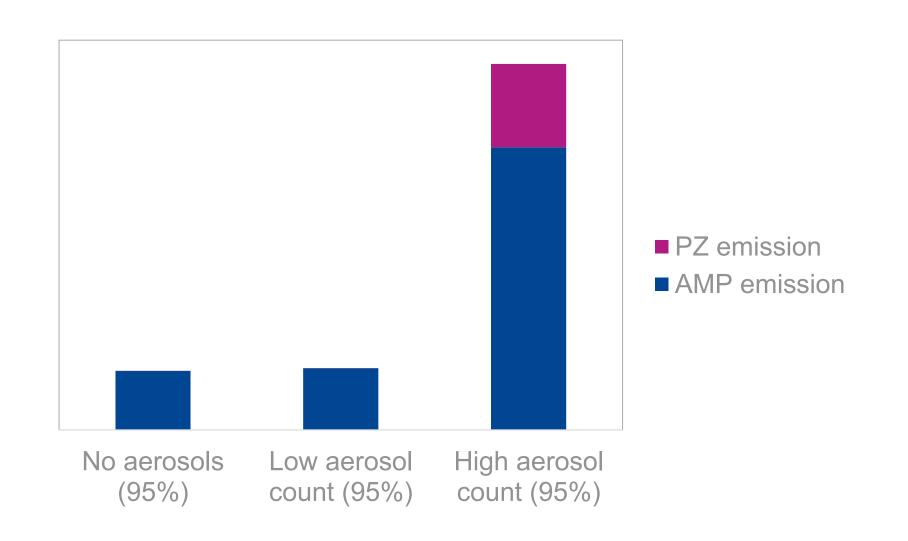
Operability and long-term performance

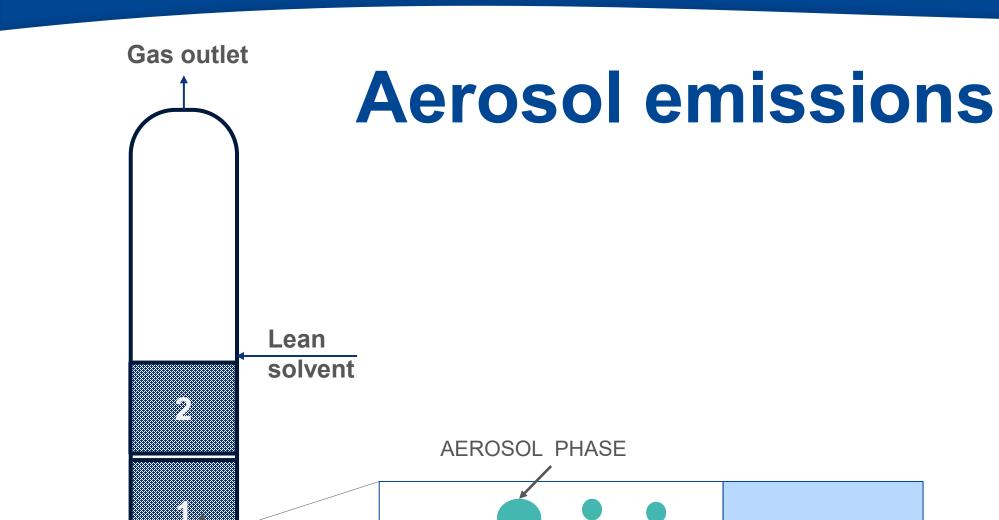
Solvent management studies

Design of emission mitigation technologies



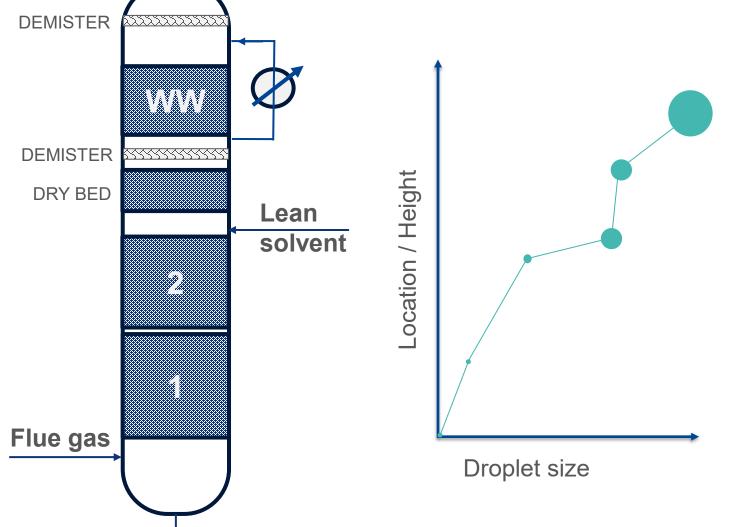
Emissions


Emissions = Volatile + Aerosol + Entrainment

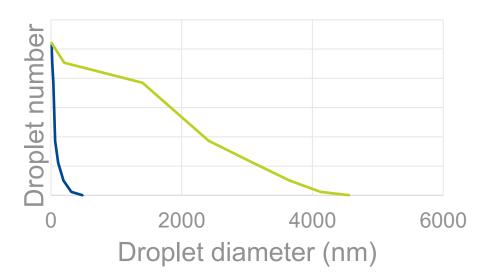

- Solvent amines
- Degradation compounds like ammonia, aldehydes, etc.

Volatile / aerosol emissions

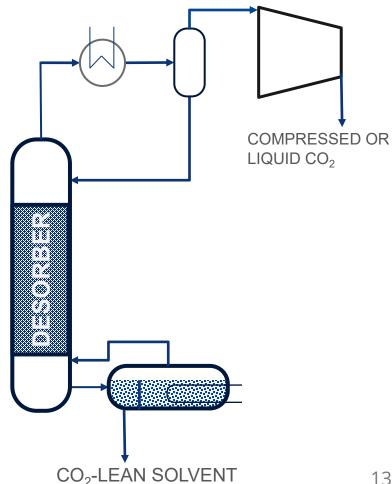
GAS PHASE


LIQUID PHASE

Flue gas



Aerosol emissions


Gas outlet

CO₂ purity

- **Amines**
- Volatile degradation compounds
- Oxygen/Nitrogen
- NOx?

- Amines
- Volatile degradation compounds
- Oxygen
- NOx?

Online measurements

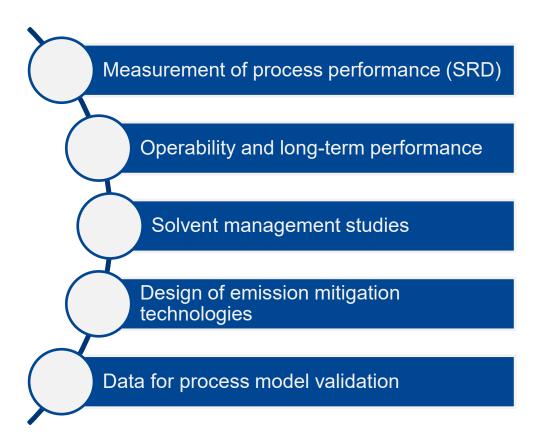
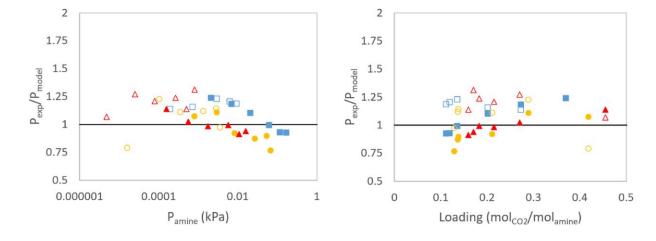


Table 3. Range and average value measured components sample type 2

	Range	Average		Limit
Component measured	(ppm)	(ppm)	Component reference	(ppm)
Sum BTX	0	0	Aromatic hydrocarbon	0.02
Sum CH	0-1.5	0.78	Total volatile hydrocarbons (calc as CH ₄)	50
Sum non-methane CH	0.2-1	0.5	Non-volatile organic residue (oil, grease)	5
Acetaldehyde (C ₂ H ₄ O)	0-0.03	0.006	Acetaldehyde	0.2
Ammonia (NH₃)	0.02-0.04	0.03	Ammonia	2.5
Benzene (C ₆ H ₆)	0	0	Aromatic hydrocarbon	0.02
Carbon monoxide (CO)	0-0.2	0.1	Carbon monoxide	10
Carbonylsulfide (COS)	0	0	Total Sulfur	0.1
Dimethylether				
(C ₂ H ₆ O_DIM)	0-0.05	0.003	Total volatile hydrocarbons	50
Ethane (C ₂ H ₆)	0.1-0.4	0.18	Total volatile hydrocarbons	50
Ethanol (C ₂ H ₆ O_ETH)	0-0.2	0.049	Total volatile hydrocarbons	50
Hydrogensulfide (H₂S)	0.005- 0.015	0.011	Total Sulfur	0.1
Methane (CH ₄)	0-0.5	0.25	Total volatile hydrocarbons (calc as CH ₄)	50
Methanol (CH₃OH)	0-0.3	0.05	Methanol	10
Moisture (H ₂ O)	0.1-1	0.46	Moisture	20
Nitrogendioxide (NO ₂)	0.2-0.8	0.45	Oxides of nitrogen (NO/NO ₂)	2.5
Nitrogemonoxide (NO)	0-0.01	0	Oxides of nitrogen (NO/NO ₂)	2.5
Oxygen (O ₂)	0-30	5.4	Oxygen	30
Propane (C₃H ₈)	0-0.08	0.02	Total volatile hydrocarbons (calc as CH ₄)	50
Sulfurdioxide (SO ₂)	0-0.01	0.0015	Total sulfur (as S)	0.1
Toluene (C ₇ H ₈)	0-0.004	0.00016	Aromatic hydrocarbon	0.02
Total Sulfur (TSC)	0-0,002	2,76E-05	Total sulfur (as S)	0.1
Xylene (C ₈ H ₁₀)	0-0,002	0,00013	Aromatic hydrocarbon	0.02

Modelling and simulations

- Rate-based models are the standard
- Models predicting the behaviour of aerosol growth and emissions
- Models describing solvent degradation as part of the process simulations



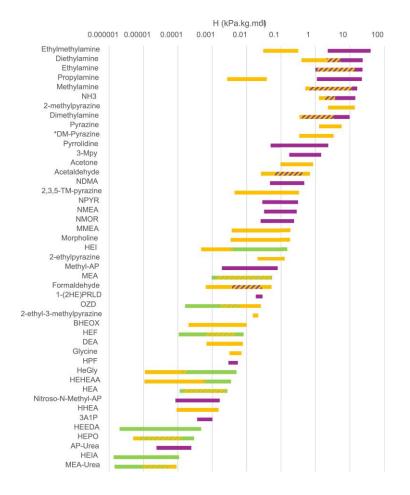
The heat of absorption of CO₂

Reaction kinetics and solvent viscosity

CO₂ vapor-liquid equilibrium data

Volatility experiments

Left: Difference between experimental and predicted AMP/PZ partial pressure as a function of the experimental partial pressure; **Right:** Difference between experimental and predicted AMP/PZ partial pressure as a function of loading.


Experimental solvent characterization

The heat of absorption of CO₂

Reaction kinetics and solvent viscosity

CO₂ vapor-liquid equilibrium data

Volatility experiments

Maxime H.J.-J. François, Vanja Buvik, Kai Vernstad, Hanna K. Knuutila, Assessment of the volatility of 17 amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P, Carbon Capture Science & Technology, Volume 13, 2024, https://doi.org/10.1016/j.ccst.2024.100326.

Concluding remarks

- High quality pilot data
- Testing of new emission and degradation mitigation technologies
- Studies focusing on CO₂ purity
- High quality laboratory data to support model development and to create fundamental understanding
- Analytical and online monitoring methods to identify and monitor degradation compounds
- Development of new solvents

THANK YOU!