

The potential of advanced sorbents to reduce CO₂ capture cost capture via temperature swing adsorption

Joint project DCC3

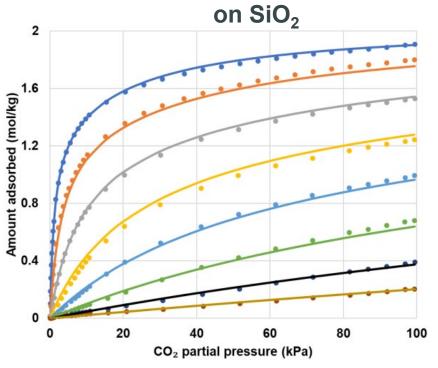
Schalk Cloete, Shreenath Krishnamurthy, Suat Canberk Ozan, Samuel Heng, Sayali Ramdas Chavan, Véronique Pugnet

Introduction

- Capturing CO₂ is essential to mitigate climate change and meet global decarbonization goals.
- CO₂ in flue gas is dilute (~5%), making capture a technical challenge.
- Reducing CAPEX and OPEX are key to make CO₂ capture economically viable.
- Use of adsorption-based process could be of potential interest.
- The steam-assisted TSA process is used to assess the performance of "ideal" adsorbents, with the potential to reduce overall operational costs.

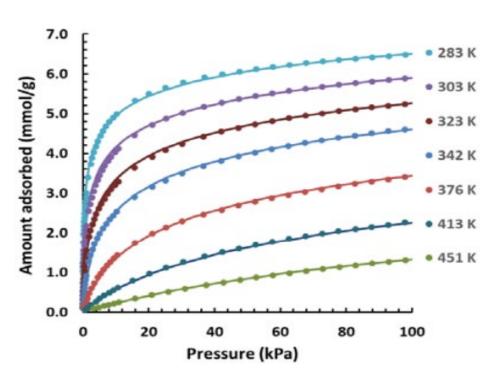
Fluidized bed TSA process

- Natural gas combined cycle power plant.
- Temperature swing driven by steam extracted from the power plant.
- Indirect recuperative heat exchange with a circulating heat transfer fluid.
- Direct contact cooler for flue gas drying before the adsorber.
- CO₂ purification unit for pure liquid CO₂ production after the desorber.


The adsorbent case studies

Case 1- Chemisorbent

- Dual-site Langmuir for CO₂ and GAB model for H₂O
- Linear driving force kinetics


Epoxybutane-Polyethylenimine (EB-PEI)

Case 2- Physisorbent

- Competitive Dual-site Langmuir for CO₂, H₂O and N₂
- Macropore mass transfer resistance

Zeolite 13X

Modelling framework

- LCOE = Levelized cost of electricity
- CAC = CO₂ avoidance cost
- CPU = Cryogenic CO₂ purification unit

Next case

Process modelling

1D adsorber and desorber model,

flue gas dryer and blower, heat

exchangers, CPU & parasitic load

Optimized result LCOE, CAC, CAPEX, **SINTEF** Energy penalty and optimal features **YES** Optimal? NO **Economic assessment Bayesian optimization** CAPEX and OPEX assessment. Different run cases in search of LCOE and CAC calculation the minimum LCOE **Unit sizing** LCOE **Electricity &** Sorbent demand

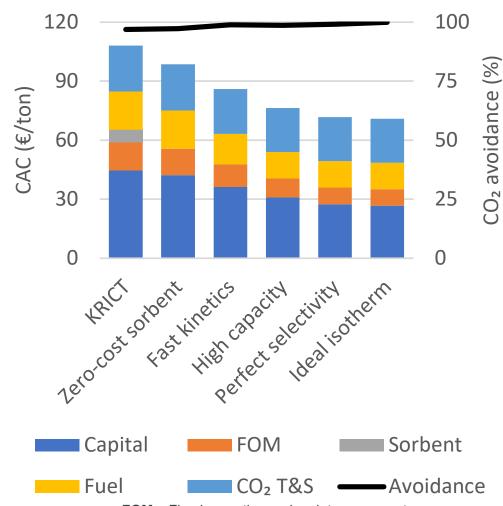
Ideal sorbent assumptions

Progressively add ideal assumptions:

- 1. **Zero-cost sorbent:** No sorbent cost
- **2. Fast kinetics:** Add fast kinetics to the previous case
- 3. **High capacity:** Add a high adsorption capacity (6 mol/kg) and low heat capacity to the previous case
- **4. Perfect selectivity:** H₂O and N₂ and non-adsorbing relative to the previous case
- **5. Ideal isotherm:** Add isotherm parameter optimization to the previous case, optimizing values of q_b , q_d , b_0 , d_0 , ΔH_b , ΔH_d

Process modelling

1D adsorber and desorber model, flue gas dryer and blower, heat exchangers, CPU & parasitic load


Unit sizing Electricity & Sorbent demand

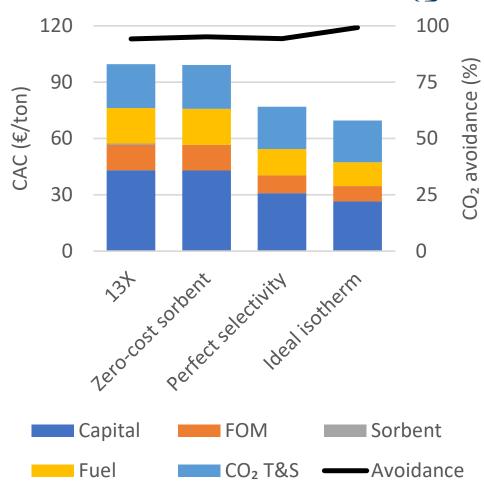
Economic assessment

KRICT EB-PEI comparison results

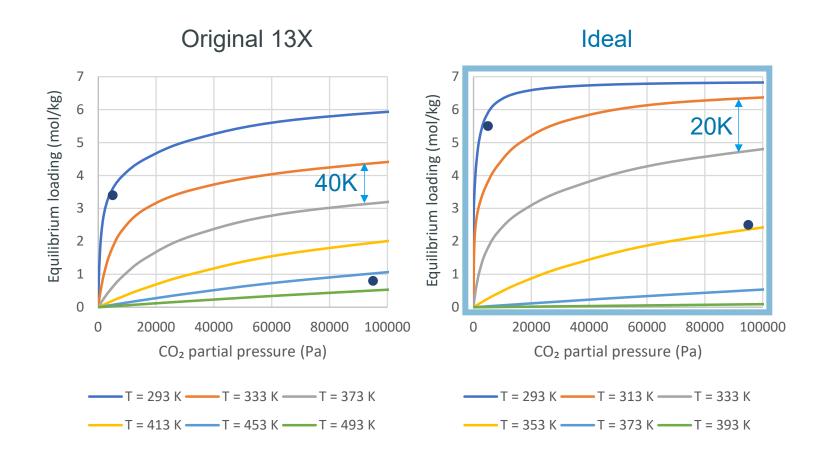
- Reducing adsorbent cost ↓10 €/ton
- Reducing kinetic limitations ↓ 13 €/ton
 - Smaller reactors
 - Avoids wider temperature swing
- High adsorption capacity ↓ 10 €/ton
 - Lower sorbent circulation rate
 - Lower sensible heat penalty
- No H₂O adsorption ↓ 5 €/ton
 - Avoids the need for flue gas drying
 - Avoids heat demand for H₂O desorption

FOM = Fixed operating and maintenance costs

Fuel = Extra natural gas consumption required for CO₂ capture,
purification, and liquefaction


CO₂ T&S = CO₂ transport and storage (assumed to cost 20

13X comparison results


SINTER

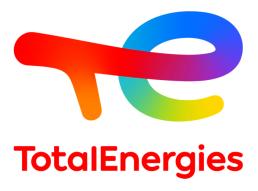
- Reducing sorbent costs
 - Negligible effect because 13X is inexpensive.
- Fast kinetics and high adsorption capacity
 - Already present in 13X and not considered
- Perfect selectivity ↓ 22 €/ton
 - Lower desorption temperature & sorbent circulation rate
 - No flue gas drying or heat demand for H₂O desorption
- **Isotherm optimization** ↓ 7 €/ton
 - TSA prefers a more temperature-sensitive sorbent

Zeolite13X vs ideal isotherm

- The ideal isotherm is much more temperature sensitive
- This comes at the cost of much higher desorption heat requirement (kJ/mol CO₂)
- Hence, a larger quantity of lower-grade heat is needed
- The amount of sensible heat recuperation required is reduced.
- Slight shift to left to saturate at higher temperatures.

Conclusions

- Promising results as the sorbent-based process using the KRICT sorbent can outcompete
 solvent technologies due to lower energy demands and smaller reactors
 - CSAR (electrified FBTSA technology) is attractive against solvents for CHP applications ¹
 - CSAR and FBTSA return similar costs for coal-fired power plant retrofits ²
- This competitive edge would increase with significant sorbent improvements. The most important handles for reducing CO₂ avoidance costs through sorbent development are:
 - Relative to a **chemisorbent**: Lowering costs, improving kinetics, and increasing capacity
 - Relative to a **physisorbent**: Reducing H₂O and N₂ competition and increasing temperature sensitivity


^{1.} Prospects of the Novel CSAR Concept for Fully Electric or Flexible Electric—Thermal Hybrid CO2 Capture from CHP Plants, Schalk Cloete, Chaitanya Dhoke, Davide Bonalumi, John Morud, Antonio Giuffrida, Matteo Carmelo Romano, and Abdelahafour Zaabout. Energy & Fuels 2023 37 (16), 12030-12044

^{2.} Heat pump-driven adsorption CO2 capture for simple and cost-effective retrofits of coal power plants, Schalk Cloete, Antonio Giuffrida, Matteo C. Romano, Abdelghafour Zaabout, Applied Thermal Engineering, 2024, 121456

Conclusions

- This work shows **potential for cost reduction** by enhancement of adsorbent properties. (30-40 €/ton cost reduction in the NGCC application simulated).
- Trade-off between physisorbent and chemisorbents due their unique properties and drawbacks.
- Preferential adsorption of H₂O and competitive adsorption of N₂ could potentially be manipulated in physisorbents (e.g. CALF20).
- In case of chemisorbent, room of improvement in terms of adsorption capacity and kinetics.
- Bulk production use of cheaper raw materials and simpler synthesis could bring down the adsorbent costs.

Thank you

Supplementary methodology slides

Isotherm parameters

Sorbent		KRICT	13X	
Isotherm	CO ₂	DSL	DSL-competitive	
	N ₂	-	DSL-competitive	
	H₂O	f(RH)	DSL	
Kinetics	CO ₂	LDF	Macropore	
	N ₂	-	Macropore	
	H₂O	Mass Tr.	Macropore	

KRICT EB PEI

ZEOLITE 13X

	CO ₂	$CO_{2,bin}$	N_2	H ₂ O
$q_{sb}(mol/m^3)$	3489.44	3125.7	6613.55	10468.60
$b_0(m^3/mol)$	8.65e-7	8.8e-8	2.50e-6	2.35e-7
$\Delta U_b(kJ/mol)$	36.64	38.15	15.82	55.72
$q_{sd}(mol/m^3)$	2872.35	1897.5	0	6434.50
$d_0(m^3/mol)$	2.63e-8	1.18e-9	0	7.99e-8
$\Delta U_d(kJ/mol)$	35.70	34.44	0	45.48

	CO ₂
$q_{s1}(mol/kg)$	1.28
$b_{01}(1/Pa)$	1.04E-19
$\Delta H_1(J/mol)$	101800
$q_{s2}(mol/kg)$	0.79
$b_{02}(1/Pa)$	1.98e-17
$\Delta H_2(J/mol)$	78700

- 1D fluidized bed model for the adsorber and the desorber
- Two-phase theory where the bed is divided into dense and dilute phases with modelled mass exchange
- Reaction is modelled with a dual-site Langmiur isotherm and linear driving force kinetics

- Recuperators and coolers are modelled as heat exchangers with no reaction
- Correlations employed for:
 - Flue gas blower power
 - Cryogenic CO₂ purification unit power
 - Parasitic load on NGCC plant (due to steam extraction)
 - Direct contact cooler volume for a specified amount of flue gas drying

- Bottom-up economic assessment built into the process model
- Capital cost estimate of all units
- Operating costs (fuel, sorbent)
- Levelized cost of electricity with and without CO₂ capture
- CO₂ avoidance cost calculated from LCOE and CO₂ intensity with and without CO₂ capture

- Bayesian optimization to minimize the LCOE
- Functions fitted through existing cases to decide where the next simulation should be run
- New cases are run until an optimization criterion is reached
- Usually requires around 500 automated runs with the 17 features of the FBTSA process

Optimized parameters

1D Adsorber and desorber model

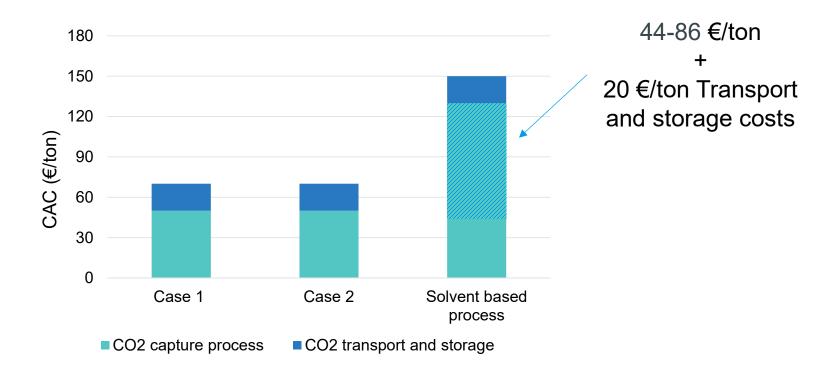
- Steam temperature (°C)
- Sorbent circulation rate (kg/s)
- Adsorber & desorber HX fraction -
- Other HX area (m²)
- Cooler fraction -
- Effective adsorber & desorber diameter (m)
- Adsorber static bed height (m)
- Desorber diameter ratio -
- CPU parameter -
- Number of trains -
- Drying fraction -
- Adsorber & desorber cyclone
 & filter velocity (m/s)

Economic assessment

- Capital costs
- Fixed maintenance costs
- Fuel
- Sorbent costs
- Fixed transport and storage costs
- Fixed CO₂ taxes

Bayesian optimization

Levelized cost of electricity


$$\frac{ACC + FOM + Fuel + Sorbent + T&S + Tax}{P \cdot 8766 \cdot CF}$$

CO₂ avoidance cost

$$CAC\left(\frac{\epsilon}{ton}\right) = \frac{LCOE_{CCS} - LCOEref}{e_{ref} - eCCS}$$

Conclusions

Features for optimization

- **Desorption steam temperature.** Higher temperatures will achieve a higher CO₂ capture ratio at the expense of a higher energy.
- Sorbent circulation rate. Higher values increase CO₂ capture but also increase the sensible heat transfer requirement
- Heat exchanger areas in the adsorber, desorber, recuperators, and cooler. Higher heat exchange areas increase capital cost narrow the approach between the bed and heat exchange fluid temperature.
- Cross sectional areas of adsorber and desorber. Lower values reduce reactor costs but reduce conversion due to shorter gas residence time.
- Adsorber bed height. Lower values reduce reactor costs but reduce conversion due to shorter gas residence time. The desorber height is 5 m higher than the adsorber height to allow for sorbent circulation.
- **Desorber diameter ratio.** The desorber is designed as a truncated cone with a smaller cross section at the bottom to ensure good fluidization as the volume of desorbed gas increases along the reactor height.
- **CPU optimization.** Energy demand and capital cost of the CPU increase with the percentage of CO2 recovery, creating a trade-off that requires optimization.
- Number of reactor trains. The very large flue gas steam requires multiple parallel reactor trains.
- **DCC drying.** More drying increases DCC costs but reduces the amount of water fed to the adsorber.
- Adsorber and desorber cyclone and filter velocities. Higher velocities reduce capital costs at the expense of greater pressure drop.
- In case of the ideal sorbent. The six sorbent parameters discussed in the next slide.