

Design and optimisation of Intensified rotating packed bed (RPB) absorbers for carbon capture from natural gas power plants

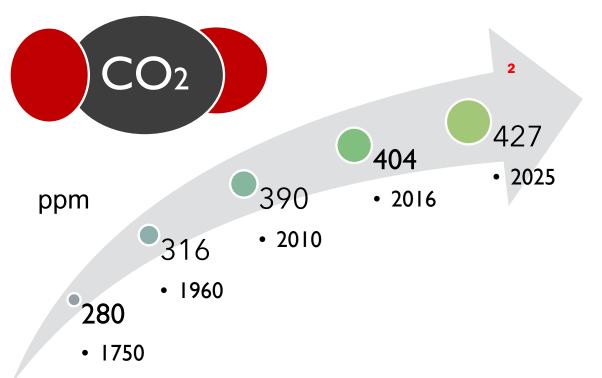
Olajide Otitoju^a, Alexandre Pactat^b, Samuel Heng^b, Miguel Abreu^b, **Meihong Wang**^{a*}

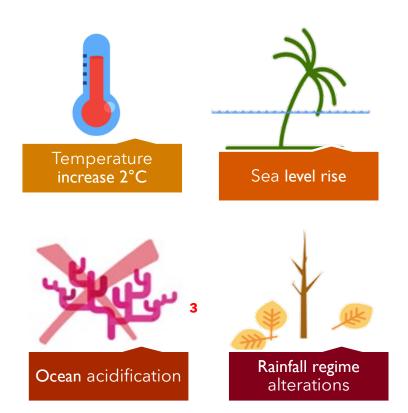
^aSchool of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom ^bTotalEnergies OneTech, CSTJF-avenue Larribau, 64018-Pau, France

8th Post-Combustion Capture Conference, Marseille, France 16th- 18th September 2025

Outline

- 1. Introduction
- 2. Model development, validation & scale-up
- 3. RPB absorber designs options and performance analysis
- 4. RPB absorber intercooling and pressure drop analysis
- 5. Conclusions


1. Introduction


TotalEnergies

PCCC-8

1.1 Background

- Natural gas combined cycle (NGCC) power plants cleaner than coal but still CO₂ intensive
 - CO₂ from NGCC: 350-450 gCO₂/kWh¹

¹Otitojú O, Oko E, Wang M. Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation. *Appl Energy* 2021;292: 116893 ²CO₂

Atmospheric CO₂ concentration for July 2023. Available at: https://www.co2.earth/earths-co2-main-page (Accessed: 08 September 2025 Intergovernmental Panel on Climate Change (2014) Climate Change 2014: Synthesis Report, 5th Assessment Report: Mitigation of Climate doi: 10.1017/CBO9781107415324.

1. Introduction

1.1 Background

- Carbon capture essential for net-zero targets
- Carbon capture process based on packed column absorbers and strippers:
 - \bullet remains the industrial benchmark for CO_2 capture
 - large, costly and high energy penalties
- Rotating Packed Beds (RPBs):
 - offer a step-change in gas-liquid mass transfer through high centrifugal fields
 - reduces equipment footprint
 - enhances efficiency

Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., N. M. Musa (2015), Process intensification for post-combustion CO_2 capture based on Chemical Absorption: a critical review, *Applied Energy*, Vol. 158, p275 – 291. *Highly Cited Paper in Web of Science*

Smaller footprint

Fig 1. RPB vs Packed column

1. Introduction

1.2 Aim and objectives

Aim

To **design** and **optimise** an intensified post-combustion carbon capture system using various RPB absorber configurations with the **goal of minimising equipment footprint, energy use and cost** associated with carbon capture in natural gas power plants.

Objectives

- Model development, validation and scale-up of RPB absorber.
- Design of different RPB absorber configurations (i.e. single, multiple, series and parallel arrangements).
- Implementation of RPB absorber intercooling.
- Process optimisation of the intercooled RPB absorbers

Otitoju, O., Oko, E., Wang, M. (2023), Modelling, scale-up and techno-economic assessments of rotating packed bed absorber for CO₂ capture from a 250 MWe combined cycle gas turbine power plant, *Applied Energy*, Vol. 335, 120747.

1. Introduction

1.3 Research Methodology

RPB absorber

- Model development
- Model validation
- Model scale-up

RPB absorber designs & performance analysis

- Option 1–One RPB absorber at 55 wt% and 75 wt% MEA
- Option 2–Two RPB absorbers in parallel at 75 wt% MEA
- Option 3– EGR with One RPB absorber at 75 wt% MEA
- Option 4– EGR with Two RPB absorbers in parallel at 75 wt% MEA

RPB absorber intercooling & process analysis

- Absorber intercooling
- Pressure drop analysis

Process optimization & cost

- Optimal process conditions
- Carbon capture cost

University of Sheffield | Chemical & Biological Engineering | Chemical & Sheffield | Chemic

Material balance for the gas phase

$$0 = -\frac{1}{2\pi rZ} \frac{\delta(F_g y_i)}{\delta r} - a_{gl} N_i \tag{1}$$

Material balance for the liquid phase

$$0 = \frac{1}{2\pi rZ} \frac{\delta(F_l x_i)}{\delta r} + a_{gl} N_i \tag{2}$$

Energy balance for the gas phase

$$0 = -\frac{F_g C_{p,g}}{2\pi r Z} \frac{\delta T_g}{\delta r} + a_{gl} h_{gl} (T_l - T_g)$$
(3)

Energy balance for the liquid phase

$$0 = \frac{F_l C_{p,l}}{2\pi r Z} \frac{\delta T_l}{\delta r} - a_{gl} \left(h_{gl} (T_l - T_g) - \Delta H_{rxn} N_{CO2} - \Delta H_{vap,H_2O} N_{H_2O} - \Delta H_{vap,MEA} N_{MEA} \right)$$
(4)

Model developed in *Aspen Custom Modeler V11* with eNRTL-RK method.

2. Model development, validation & scale-up

2.2 Model Validation

Validated against pilot-scale data from Jassim et al⁴.

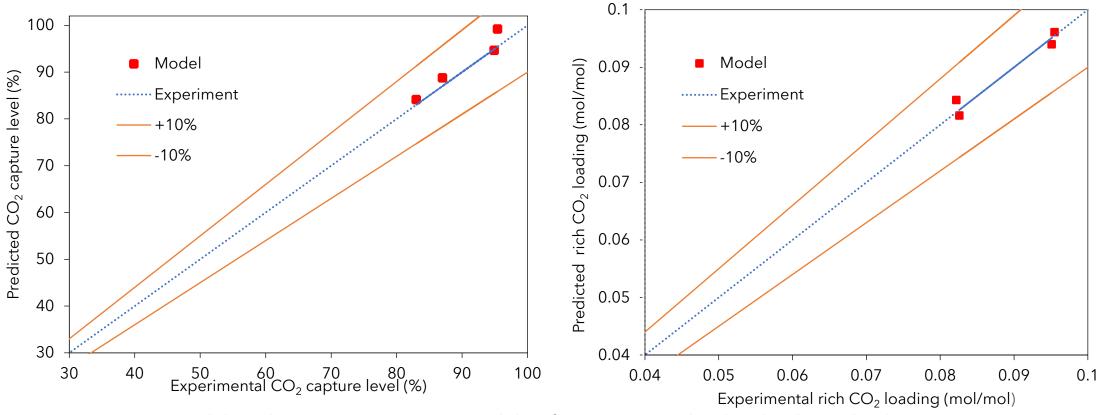


Fig 3. Model predictions versus experimental data for CO₂ capture level and Rich CO₂ loading

Model predictions align with experimental data for CO₂ capture levels and rich solvent
 CO₂ loading

⁴Jassim MS, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. *Ind Eng Chem Res* 2007;46:2823-33.

2. Model development, validation & scale-up

Validated RPB model was scaled up to assess designs for >100 MW CCGT power plant.

Lean solvent flow rate (L)

$$L = \frac{Fx_{CO_2}\Psi_{CO_2}}{100\check{\mathsf{Z}}\Delta\alpha} \left[\frac{M_{MEA}}{44.009} \left(1 + \frac{1 - \omega_{MEA}}{\omega_{MEA}} \right) + \check{\mathsf{Z}}\alpha_{lean} \right]$$

 M_{MEA} is the molar mass of MEA $\Delta\alpha$ (delta alpha) is the difference between rich and lean CO₂ loading $(\alpha_{rich} - \alpha_{lean}).$

 W_{MEA} is the wt% of MEA

 x_{CO_2} is the mass fraction of CO_2 (wt%)

 Ψ_{CO_2} is the desired CO₂ capture level (%)

F is the flue gas mass flow rate (kg/s)

The inner radius (R_i)

$$R_i = \left(\frac{G}{\pi v_{iet} (1 - f_d)}\right)^{\frac{1}{2}} \left(\frac{4\rho_G}{\rho_L}\right)^{\frac{1}{4}}$$

Where:

G = Volumetric gas flow rate, m³/s

 v_{iet} = Liquid jet velocity (4-5 m/s recommended)

 f_d = Fraction of the packing inner radius that the liquid distributor occupies about 0.25-0.3)

 ρ_G = Gas phase density (kg/m³)

 ρ_L = Liquid phase density (kg/m³) (increases with MEA concentration thereby resulting in lesser r_i)

The axial height (Z)

The gas phase superficial velocity (U_G) can be obtained using the Sherwood flood correlation (Singh et al. 1992);

$$\log \frac{U_{G_{flood}}^2 a_t}{R_i \omega^2 \varepsilon^3} \left[\frac{\rho_G}{\rho_L} \right] \left[\frac{\mu_L}{\mu_W} \right]^{0.2} = -2.27 - 1.14 \log \frac{L}{G} \sqrt{\frac{\rho_G}{\rho_L}} - 0.17 \left[\log \frac{L}{G} \sqrt{\frac{\rho_G}{\rho_L}} \right]^2$$

Axial height (Z) is obtained as follows (Agarwal et al., 2010)

$$Z = \frac{G}{2\pi R_i U_G}$$

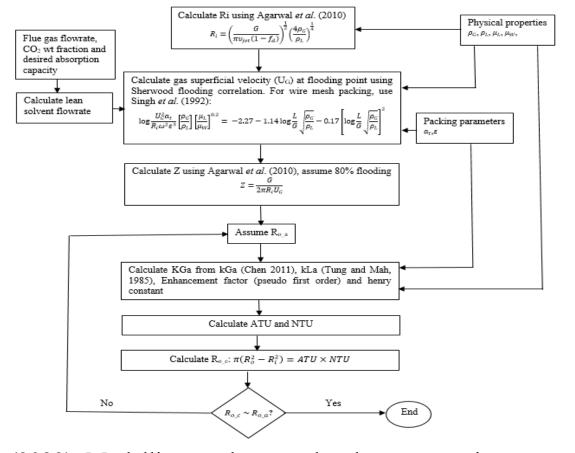
The Outer radius (R_o)

The outer diameter (R_0) Finally, the outer diameter is calculated:

$$\pi(R_o^2 - R_i^2) = ATU \times NTU$$

• Agarwal, L., Pavani, V., Rao, D.P. and Kaistha, N. Process Intensification in HiGee Absorption and Distillation: Design Procedure and Applications. Ind. Eng. Chem. Res. 2010, 49, 10046–10058. PCCC-8

Chemical & 2. Model development, validation & scale-up


p

talEnergies

2.3 Scale-up

■ Flue gas at nearly 500°C cooled to ~40.5°C via direct contact

cooler (DCC).

Otitoju, O., Oko, E., Wang, M. (2023), Modelling, scale-up and techno-economic assessments of rotating packed bed absorber for CO₂ capture from a 250 MWe combined cycle gas turbine power plant, *Applied Energy*, Vol. 335, 120747.

TotalEnergies

3.1 Option 1 - One RPB Absorner (55 wt% MEA vs 75 wt% MEA)

■ In Design Option 1, a single RPB absorber is used, operating with 55 wt% MEA and 75 wt% MEA for a large-scale CCGT power plant (>100 MW).

Table 2: RPB absorber size and operating conditions for design option 1

	MEA concentrations		
	55 wt%	75 wt%	
R _i (m)	***	***	
$R_o(m)$	***	***	
Z [°] (m)	***	***	
Lean flow rate (kg/s)	***	***	
L/G ratio (kg/kg)	0.67	0.53	
Lean Temperature (K)	313.15	313.15	
RPB Pressure (bar)	1.01325		
Rotation (RPM)	200		
Packing type	Expamet		
Surface area (m²/m³)	2,132		

3.1 Option 1 - One RPB Absorner (55 wt% MEA vs 75 wt% MEA)

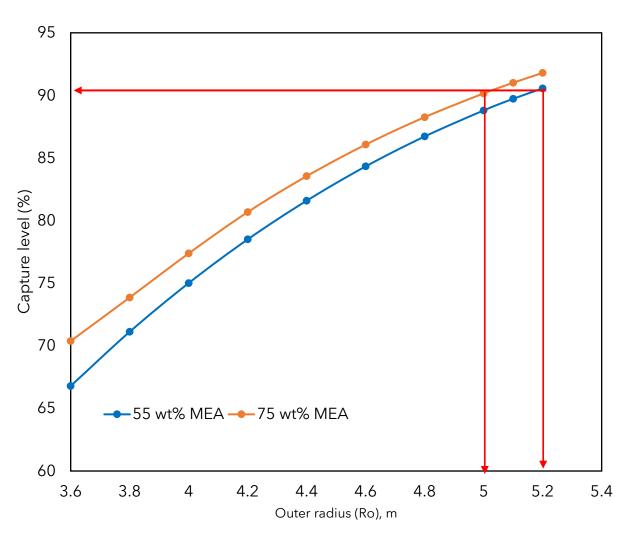


Fig 4. influence of outer radius on capture level

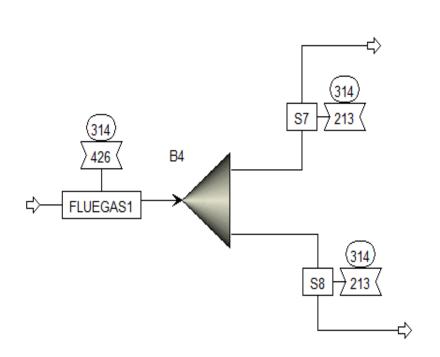
- With design Option 1.
 Key findings include;
- Achieved 90% CO₂ capture.
- 75 wt% MEA reduces size by roughly 5%
- Rotor power: 3,240 kW at 55 wt% MEA vs 1,995 kW at 75 wt% MEA.
- 38% less rotor energy consumption with 75 wt% MEA because of lower solvent flow and RPB size.

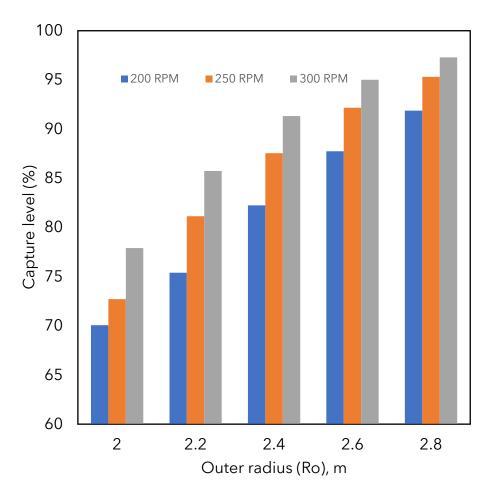
TotalEnergies

3.2 Option 2 - Two RPB Absorbers in parallel (75 wt% MEA)

With two RPB absorbers in parallel, the flue gas flow rate is halved in a splitter.

Table 3: RPB absorber size and operating conditions for design Option 2




Fig 5. Flue gas stream to each of the RPB absorber

RPB	MEA conc. 75 wt%	
No of RPB	2	
R _i (m)	***	
$R_o(m)$	***	
Z (m)	***	
Lean flow rate (kg/s)	***	
Lean Temperature (K)	313.15	
RPB Pressure (bar)	1.01325	
Rotation (RPM)	200-300	
Packing type	Expamet	
Surface area (m²/m³)	2,132	

3.2 Option 2 - Two RPB Absorbers in parallel (75 wt% MEA)

Fig. 6 effect of outer radius on capture level across various rotor speeds

Key findings for Option 2

Increasing rotor speed **reduces the required absorber size** (outer radius, Ro) to achieve 90% CO₂ capture. However, it significantly **increases rotor energy consumption**.

At 200 RPM:

Rotor power = 652.52 kW for two RPBs

At 250 RPM:

Rotor power = 873.88 kW for two RPBs

At 300 RPM:

Rotor power = 1111.64 kW for two RPBs Rotor energy at 200 RPM is **41.3% lower** than at 300 RPM.

Trade-off: Higher speed improves compactness but at the cost of greater energy use.

University of | Chemical & 3. RPB absorber design options & Performance analysis

Sheffield Biological Engineering 3.3 Option 3 - One RPB Absorber+ EGR (75 wt% MEA)

■ EGR of 35.44% produced 6 vol % CO_2 composition in the flue gas.

✓ EGR was varied from 0 - 50 vol%

Table 4. Exhaust gas flowrate and composition at 35.44% EGR and composition and flow rate after cooling (*Confidential*)

University of Sheffield | Chemica Biologic Enginee | 3. RPB absorber design options & Performance analysis | 3.4 Option 4 - Two RPB Absorbers + EGR (75 wt% MEA)

With Option 4 - (2 RPB absorbers in parallel + EGR + 75 wt% MEA), the flue gas flow rate is halved in a splitter.

Key Findings for Option 4

- 15% less R_o required to achieve 90% capture at 300 RPM compared to at 200 RPM
- Rotor speed increase reduces absorber size (Ro) for achieving 90% CO₂ capture:
- However, it significantly increases rotor energy consumption: 301.02 kW at 200 RPM vs 489.06 kW at 300 RPM
- Operating at 200 RPM saves 38.5% energy compared to 300 RPM.
- Insight: A higher rotor speed results in a more compact design but at the expense of much higher energy usage.

3.5 Comparison 4 design options

- For the 4 design options compared.
 - EGR, MEA concentration and rotor speed key to performance.
 - EGR lowers flue gas flow.
 - Option 4 at 250 RPM:
 - > 4× smaller RPBs than Option 1
 - Lowest energy
 - ➤ Best size-energy trade-off.
 - ➤ Option 4 (250 RPM) recommended for further analysis

4. RPB absorbers with Inter-cooler & Performance analysis

4.1 RPB Absorbers with Inter-cooler

- Liquid phase temperature rise observed in the RPB
- Intercoolers will lower temperature to enhance absorption in the RPB
- The benefits of intercoolers in RPB absorbers explored.

Oko, E. Wang, M., Ramshaw, C. (2018), Intercooling for rotating packed bed absorbers in intensified solvent-based post-combustion CO₂ capture process, *Applied Energy*, Vol. 223, p302-316.

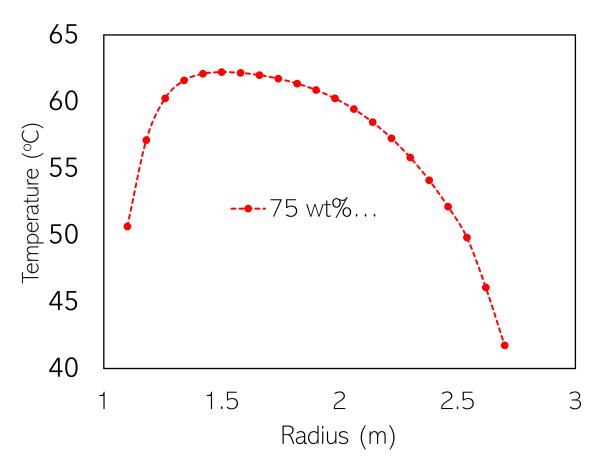


Fig 8. Liquid temperature profile in RPB absorber with 75 wt% MEA

4.1 RPB absorber with Intercoolers

Performance Improvements of RPBs with Intercooler

- 16% reduction in total packing volume compared to a single RPB without intercooling.
- 14% drop in the maximum liquid phase temperature, improving absorption performance by up to 12%.
- Intercooling led to a 5% reduction in solvent flowrate, enabling further operational efficiency.

Insights

 Intercooling is essential in mitigating temperature rise within the RPB absorber, which can otherwise reduce CO₂ capture efficiency.

4.2.1 pressure drop correlations

Pressure Drop Correlations Used

- ➤ Liu et al. (1996)
- Sandilya et al. (2001)
- >Agarwal et al. (2010)
- ➤ Neumann et al. (2017)

4.2.1 pressure drop correlations

The **pressure drop correlation** by **Liu et al. (1996)** is described by these equations

$$\Delta P = \Delta P_d + \Delta P_w$$

$$\Delta P_{d} = \frac{1}{2} F v^{2} \frac{a_{t}}{\epsilon^{3}} f_{d} (R_{o} - R_{i})$$

$$\Delta P_{w} = \frac{1}{2} F v^{2} \frac{a_{t}}{(\in -\in_{L})^{3}} f_{w}(R_{o} - R_{i})$$

Where,

 ΔP_d = pressure drop of dry bed (Pa)

 ΔP_w = pressure drop of wet bed (Pa)

 F_V = gas capacity factor (kg^{1/2}/m^{1/2} s)

 a_t = specific area of packing per unit volume (m²/m³)

 ε is the bed porosity (m³/m³)

 f_w = Wet resistance factor for cylindrical packing

f_d=resistant coefficient

4.2.1 pressure drop correlations

The pressure drop correlation by **Sandilya et al. (2001)** consists primarily of the following components:

$$\Delta P = \Delta P_c + \Delta P_f + \Delta P_m$$

(i) Centrifugal pressure drop

$$\Delta P_c = \frac{1.8}{8} \rho_g \omega^2 (R_o^2 - R_i^2)$$

(ii) Frictional pressure drop

$$\Delta P_{\rm f} = \frac{(1 - \epsilon)}{\epsilon^3} \frac{Q_g}{2\pi z d_p} \left(\frac{150(1 - \epsilon)\mu_g}{d_p} \ln \frac{R_o}{R_i} \right) + 1.75 \frac{Q_g \rho_g}{2\pi z} \left(\frac{1}{R_i} - \frac{1}{R_o} \right)$$

(iii) Momentum-gain pressure drop

$$\Delta P_m = \frac{1}{2} \rho_g \left(\frac{Q_g}{2\pi z \epsilon} \right)^2 \left(\frac{1}{R_i^2} - \frac{1}{R_o^2} \right)$$

4.2.1 pressure drop correlations

The pressure drop correlations by **Agarwal et al. (2010)** is described by this equation.

$$\begin{split} &\Delta P_{packing} \\ &= \frac{1}{2} \rho_g A \omega^2 \left(R_o^2 - R_i^2 \right) + \frac{f \rho_g}{2 d_h} \left(\frac{Q_g}{2 \pi Z \epsilon} \right)^2 \left(\frac{1}{R_i} - \frac{1}{R_o} \right) \\ &+ \frac{1}{2} \rho_g \left(\frac{Q_g}{2 \pi Z \epsilon} \right)^2 \left(\frac{1}{R_i^2} - \frac{1}{R_o^2} \right) \end{split} \tag{8}$$

4.2.1 pressure drop correlations

The pressure drop correlation by **Neumann et al. (2017)**, is described by the following equations;

$$\begin{split} & \Delta P_{total} \\ &= A_{CH} \frac{\rho_g \omega^2}{2} \left(R_o^2 - R_i^2 \right) + \Psi_0 (1 - \varphi) \frac{(1 - \epsilon)}{\epsilon^3} \frac{F_{G,int}^2}{d_p} (R_o - R_i) \\ &+ \Delta P_{f,empty} + \Delta P_{f,rotor} + \Delta P_{rotor} \ (9) \end{split}$$

4.2.2 Sensitivity analysis and results

Effect of Ro on pressure drop

• Pressure drop increases with Ro:

> 100%: 7.7-23.7 kPa

> 110%: 8.1-23.1 kPa

> 120%: 9.8-28.1 kPa

4.2.2 Sensitivity analysis and results

Effect of Z on pressure drop

- Pressure drop reduces as Z increases:
 - > 100%: 8.7-26.2 kPa
 - > 105%: 8.1-26.2 kPa
 - > 110%: 7.5-20.5 kPa
 - > 115%: 6.9-18.3 kPa

TotalEnergies

4.2.3 comparison of packing types

Comparison of pressure drop in the RPB

	Expamet packing	Stainless steel wire mesh packing		
Pressure drop	Sandilya et	_	Agarwal et	Neumann et al
correlation	al. (2001)	al. (2001)	al. (2010)	(2017)
Pressure drop (Pa)	19585	9118.52	8704.4	9663.26
Porosity	0.76		0.96	
Surface area				
(m^2/m^3)	2132		803	

Wire Mesh: Lower pressure drop ($\approx 2 \times$ less) compared to Expamet

5. Conclusions

- EGR, MEA concentration and rotor speed are key to RPB absorber performance.
- Best performance achieved with the design consisting of 2 RPB absorbers, EGR and 75 wt% MEA i.e. above 90% and smaller RPB size (up to 4 times smaller).
- Porosity and surface area of packing are critical in RPB design.
- Wire mesh could achieve ≈2× less pressure drop compared to Expamet.
- Wire mesh offers optimal balance between efficiency and pressure drop

5. Conclusions

Optimal Operating Conditions Identified

- Rotor Speed: 275-300 RPM offers the best balance between energy consumption and cost.
- L/G Ratio: 0.9-1.0 kg/kg minimizes CO_2 capture cost while maintaining efficiency.
- Reducing MEA solvent make-up by **10-20%** could lower costs significantly (~\$68,000/yr savings).

Economic Performance Insights

- CO₂ Capture Cost: \$17.52/ton, competitive with alternative capture methods.
- Total Annualized Cost (TAC): \$4.01 million/yr, with major cost contributors being MEA solvent, electricity and O&M.

