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» Natural gas combined cycle (NGCC) power plants - cleaner than coal but still

CO, intensive
. CO, from NGCC: 350-450 gCO,/kWh:

A ) Y SN SL S
Temperature
gl « 2025
Ppm 390 - 2016

316 « 2010
* 1960

Ocean acidification R?Eg;;ﬁf ;]r:e
« |750

10titoju O, Oko E, Wang M. Technical and economic performance assessment of post-combustion carbon capture using piperazine for
large scale natural gas combined cycle power plants through process simulation. Appl Energy 2021;292: 116893 2CO,
Atmospheric CO, concentration for July 2023. Available at: https:/www.co2.earth/earths-co2-main-page (Accessed: 08 September 2025 @
Intergovernmental Panel on Climate Change (2014) Climate Change 2014: Synthesis Report, 5th Assessment Report: Mitigation of Clime
doi: 10.1017/CB0O9781107415324.
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» Carbon capture - essential for net-zero
targets

= Carbon capture process based on packed

column absorbers and strippers:
* remains the industrial benchmark for CO,
capture
 large, costly and high energy penalties

= Rotating Packed Beds (RPBs):

« offer a step-change in gas-liquid mass transfer
through high centrifugal fields

« reduces equipment footprint

« enhances efficiency

Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., N. M. Musa (2015), Process
intensification for post-combustion CO, capture based on Chemical
Absorption: a critical review, Applied Energy, Vol. 158, p275 — 291. Highly
Cited Paper in Web of Science

L
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Smaller footprint
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30m
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Fig 1. RPB vs Packed column @
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To design and optimise an intensified post-combustion carbon capture
system using various RPB absorber configurations with the goal of
minimising equipment footprint, energy use and cost associated with
carbon capture in natural gas power plants.

* Model development, validation and scale-up of RPB absorber.
« Design of different RPB absorber configurations (i.e. single,

multiple, series and parallel arrangements).

Objectives

* Implementation of RPB absorber intercooling.

* Process optimisation of the intercooled RPB absorbers

PCCC-8
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o RPB absorber S

* Model development
* Model validation
e Model scale-up

Otitoju, O., Oko, E.,

Wang M (2023) RPB absorber designs & performance analysis
2 ¢ b
Mode]]ing’ Sca]e_up and « Option 1-One RPB absorber at 55 wt% and 75 wt% MEA
tech . * Option 2-Two RPB absorbers in parallel at 75 wt% MEA

cehino-economic + Option 3 EGR with One RPB absorber at 75 wt% MEA
assessments of rotating * Option 4— EGR with Two RPB gbsorbers in parallel at 75 wt% MEA
packed bed absorber for

CO, capture from a 250 RPB absorber intercooling & process analysis
MWe combined cycle

turbi ly ¢ e Absorber intercooling
gas turbine power plant, * Pressure drop analysis

Applied Energy, Vol.

335, 120747. I v .
Process optimization & cost

Optimal process conditions
Carbon capture cost

Fig 2. Research Methodology @

PCCC-8
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Material balance for the gas phase

1 §(Fy:)
2nrZ  Or ~ dgili

Engineering 2.1 Model development

0=—

Material balance for the liquid phase

1 6(lei)
= + agN;
2nrZ  Or GgLti

Energy balance for the gas phase
E,Cp 4 8T,

_ p.g °lg
0=- 2mrZ or | agihgi(T: = Ty)

Energy balance for the liquid phase

F,C,, 8T,

27‘[7‘Z or B agl(hgl(Tl - Tg) — AHpynNco2

» Model developed in Aspen Custom Modeler V11 with eNRTL-RK method.

_ AHvap,HZO NHZO

w20 Model development, validation & scale-up

(1)

(2)

(3)

_ AHvap,MEA NMEA) (4‘)

e
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» Validated against pilot-scale data from Jassim et al®.

TotalEnergies
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Fig 3. Model predictions versus experimental data for CO, capture level and Rich CO, loading
= Model predictions align with experimental data for CO, capture levels and rich solvent
CO; loading

4Jassim MS, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous @
monoethanolamine solutions in a rotating packed bed. Ind Eng Chem Res 2007;46:2823-33. peces



’ gfﬁV"i{Et 1‘3 i 2. Model development, validation & scale-up =@
C111C Engineering 2.3 Scale-up TotalEnergies

» Validated RPB model was scaled up to assess designs for >100 MW CCGT power plant.

Lean solvent flow rate (L) The axial height (Z)

Fxco.Weo, [M o 5 The gas phase superficial velocity (Ug) can be obtained using the Sherwood
[ = 2¥co, [MmEa (1 n _MEA) + Zalean] flood correlation (Singh et al. 1992);

100ZAa  144.009 WMEA
Ugfloodat P:c - PG

Myea is the molar mass of MEA 10g—23 — = =227 —1. 1410g —— 0.17 log
Aa (delta alpha) is the difference between rich and lean CO, loading Riw“e® |pL| |Hw
(arich - alean)-
Wyea is the wt% of MEA
e mace fraction of CO, (W% Axial height (Z) i |sGo btained as fol Iows (Agarwal et al, 2010)
Weo, is the desired CO, capture level (%) —
F is the flue gas mass flow rate (kg/s) 2nR;Ug

The inner radius (R;) The Outer radius (R,)

1 1 .
G 2 (4p;\3 The outer diameter (R,)
R; = Finally, the outer diameter is
7'[Ujet(l — fa)
Where: calculated:
' 2 2

G = Volumetric gas flow rate, m3/s T[(RO - Ri ) = ATU X NTU
Vjer = Liquid jet velocity (4-5 m/s recommended)
fa = Fraction of the packing inner radius that the liquid distributor occupies about 0.25-0.3) . Agarwal, L., Pavani, V., Rao, D.P. and Kaistha, N. Process Intensification

pe = Gas phase density (kg/m3) ) ) ) .. . .
‘ in HiGee Absorption and Distillation: Design Procedure and

Applications. Ind. Eng. Chem. Res. 2010, 49, 10046-10058. PCCC-8

p1. = Liquid phase density (kg/m3) (increases with MEA concentration thereby resulting in

lesser r;)
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* Flue gas at nearly 500°C cooled to ~40.5°C via direct contact
cooler (DCCQC).

CalculaleRlusmg "-'LE:a.m“al af (2010)

Physical properties
P, B by

Flue gas flowrate, R [ ( = fal \J I I -t
CO: wt fraction and
desired absorption l
capacity
J' Caleulate gas superficial velocity (Us) at flooding point usmg

Sherwood flooding correlation. For wire mesh packing, u
Calculate lean Singh ef al (1992):
solvent flowTate ™™ - .

lng;";?;, [';—'] [:_I'I] = —227— .1.14].:-5% |'§ — 017 [ = |,: Packing parameters
L *— o=
Calculate # using Agarwal ef af. (20100, assume 30%% flooding
o
~anf

Caleulate KGa from kGa (Chen 2011), kLa (Tung and Mah,
1985}, Enhancement factor {(pseudo first order) amd henry
constant M

‘ Calculate ATU and NTU |

l

| Calculate R, .- m(RZ — R¥) = ATU x NTU |

>>>>>

Otitoju, O., Oko, E., Wang, M. (2023), Modelling, scale-up and techno-economic assessments of rotating packed bed
absorber for CO, capture from a 250 MWe combined cycle gas turbine power plant, Applied Energy, Vol. 335, @
120747. PCCC-8
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= |[n Design Option 1, a single RPB absorber is used, operating with 55 wt% MEA
and 75 wt% MEA for a large-scale CCGT power plant (>100 MW).

Table 2: RPB absorber size and operating conditions for design option 1

MEA concentrations

55 wt% 75 wt%
R| (m) **k* **k*
Ro(m) **k* **k*
Z (m) K%k K%k
Lean flow rate (kg/s) *rx *rx
L/G ratio (kg/kg) 0.67 0.53
Lean Temperature (K) 313.15 313.15
RPB Pressure (bar) 1.01325
Rotation (RPM) 200
Packing type Expamet

Surface area (m2/m?3)

2,132 @

PCCC-8
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niestyof | Gk 3 RPB absorber design options & Performance analysis
1 Option 1 - One RPB Absorner (55 wt% MEA vs 75 wt% MEA)

90 |*

~ e} o
Ul o (@]

Capture level (%)

~
(@]

65 —o—55 wit% MEA —e—75 wt% MEA

60 ¥

A

y

3.6 3.8 4 4.2 4.4 4.6 4.8 5
Outer radius (Ro), m

Fig 4. influence of outer radius on capture level

5.2

. —

= With design Option 1.

Key findings include;
Achieved 90% CO, capture.

« 75 wt% MEA reduces size by
roughly 5%

 Rotor power: 3,240 kW at 55
wt% MEA vs 1,995 kW at 75 wt%
MEA.

* 38% less rotor energy consumption
with 75 wt% MEA because of
lower solvent flow and RPB
size.

>

PCCC-8
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= With two RPB absorbers in parallel, the flue gas flow rate is halved in a splitter.

Table 3: RPB absorber size and operating conditions for design Option 2

RPB MEA conc. 75 wt%
- No of RPB 2
) | o
B4 - R, (m) kel
—— 7 (m) Sk

Fig 5. Flue gas stream to each of the RPB absorber

Lean flow rate (kg/s)
Lean Temperature (K)
RPB Pressure (bar)
Rotation (RPM)
Packing type

Surface area (m2/m?3)

**k*k

313.15
1.01325
200-300

Expamet
2132 S

PCCC-8
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100

95 m200RPM  m250RPM  m300 RPM

90

85

Capture level (%)

2 2.2 2.4 2.6 2.8
Outer radius (Ro), m

Fig. 6 effect of outer radius on capture level across
various rotor speeds

3. RPB absorber design options & Performance analysis ~——
Engineering 3.2 Option 2 - Two RPB Absorbers in parallel (75 wt% MEA)

TotalEnergies

Key findings for Option 2
Increasing rotor speed reduces the required absorber
size (outer radius, Ro) to achieve 90% CO, capture.
However, it significantly increases rotor energy
consumption.
At 200 RPM:

Rotor power = 652.52 kW for two RPBs
At 250 RPM:

Rotor power = 873.88 kW for two RPBs
At 300 RPM:

Rotor power = 1111.64 kW for two RPBs
Rotor energy at 200 RPM is 41.3% lower than at 300
RPM.
Trade-off: Higher speed improves compactness but at

the cost of greater energy use.

S

PCCC-8
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w0 Biologicl 3.3 Option 3 - One RPB Absorber+ EGR (75 wt% MEA
//4*\\ Sh@fﬁeld Engineering pren e sorhet (75wt :

» EGR of 35.44% produced 6 vol % CO, composition in the flue gas.
v'EGR was varied from 0 - 50 vol%

Table 4. Exhaust gas flowrate and composition at
35.44% EGR and composition and flow rate after
cooling (Confidential)
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= With Option 4 - (2 RPB absorbers in parallel + EGR + 75 wt% MEA), the flue gas flow rate is
halved in a splitter.

Key Findings for Option 4

* 15% less R, required to achieve 90% capture at 300 RPM compared to at 200
RPM

= Rotor speed increase reduces absorber size (Ro) for achieving 90% CO,
capture:

= However, it significantly increases rotor energy consumption:

301.02 kW at 200 RPM  vs  489.06 kW at 300 RPM

» Operating at 200 RPM saves 38.5% energy compared to 300 RPM.

= Insight: A higher rotor speed results in a more compact design but at the
expense of much higher energy usage.

) A7\
|/
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» For the 4 design options compared.

» EGR, MEA concentration and rotor speed key to
performance.

= EGR lowers flue gas flow.

= Option 4 at 250 RPM:

> 4x smaller RPBs than Option 1

» Lowest energy

> Best size-energy trade-off.

> Option 4 (250 RPM) recommended for further
analysis

PCCC-8
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= Liquid phase temperature rise 6
observed in the RPB 50 AT
= Intercoolers will lower o ;
temperature to enhance ©°° | | .
absorption in the RPB Sco | ¢ SR
. . . o "
» The benefits of intercoolers in =& |
RPB absorbers explored. 4
40
1 1.5 2 2.5 3
Radius (m)

Oko, E. Wang, M., Ramshaw, C. (2018), Intercooling
for rotating packed bed absorbers in intensified

solvent-based post-combustion CO, capture process,
Applied Energy, Vol. 223, p302-316.

Fig 8. Liquid temperature profile in RPB
absorber with 75 wt% MEA
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Performance Improvements of RPBs with Intercooler

= 16% reduction in total packing volume compared to a single
RPB without intercooling.

= 14% drop in the maximum liquid phase temperature, improving
absorption performance by up to 12%.

» Intercooling led to a 5% reduction in solvent flowrate, enabling
further operational efficiency.

Insights

» Intercooling is essential in mitigating temperature rise within the
RPB absorber, which can otherwise reduce CO, capture
efficiency.

Chemical & ¢
gl 4,1 RPB absorber with Intercoolers ...

Engineering

Fral
o (0f )
0 (_/

U
y
¢



A University of

% Sheffield

Chemical &
e 4.2 Pressure drop analysis
Engneering 4 2 1 pressure drop correlations

Pressure Drop Correlations Used
»Liu et al. (1996)
»Sandilya et al. (2001)
»Agarwal et al. (2010)
»Neumann et al. (2017)
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The pressure drop correlation by Liu et al. (1996) is described by
these equations

Chemical & o
e 4.2 Pressure drop analysis —

. TotalEnergies
Engineering 4 2 1 pressure drop correlations ’

AP = AP4 + AP,

1 At
Apd= EFV2 Efd(Ro — RI)

AP —1F 2 &t
w= 2 € —e,

)3 fW(RO _ Ri)

Where,

AP, = pressure drop of dry bed (Pa)

AP, = pressure drop of wet bed (Pa)

F,, = gas capacity factor (kg'/?/m1/2 s)

a, = specific area of packing per unit volume (m?/m?3)

g is the bed porosity (m3/m?3)

f = Wet resistance factor for cylindrical packing

f,=resistant coefficient @

H.S. Liu, C.C. Lin, S.C. Wu, H.W. Hsu, Characteristics of a rotating packed bed, Ind. Eng. Chem. Res. 35(10) (1996) 3590-35%6 PCCC-8
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E“gmeeﬂng 4.2.1 pressure drop correlations )

The pressure drop correlation by Sandilya et al. (2001) consists primarily of
the following components:
AP = AP, + APs + APy,

(i) Centrifugal pressure drop
1.8
AP = —=pgw*(RS — R;)
(ii) Frictional pressure drop

1—€ 150(1 — € R 1 1
(1-€) 9 ( )'ugln 2 +1.75Q9pg -
dp Ri 2TZ Ri RO

APy = €3 2nzd,,

(iii) Momentum-gain pressure drop

2
1 (0, \*(/1 1

AP, = = —

m =3Py <2nze> (Rlz R§>

Sandilya, P; Rao, D. P; Sharma, A.; Biswas, G. Gas-phase Mass Transfer in a Centrifugal Contactor. Ind. Eng. Chem. Res. 2001, 40 (1), 384-392. PCCC-8
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The pressure drop correlations by Agarwal et al. (2010) is
described by this equation.

APpacking

2
1 fog( @ 1 1
= —pyAw?(R2 — R?) + ==2( =2
7 PgAw*(R5 = RY) Zdh(ZnZe R, R,

1 [(Q,\ (/1 1
T 2P (27‘[26) (R-Z Rg) (8)

l

Agarwal L, Pavani V, Rao DF Kaistha N. Process intensification in HiGee absorption and distillation: design procedure and @
applications. Ind Eng Chem Res 2010,49:10046-58.

PCCC-8
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The pressure drop correlation by Neumann et al. (2017), is
described by the following equations;

Ch 1& o
e 4.2 Pressure drop analysis ——

Engineering 4 2 1 pressure drop correlations TeraiEneraies

APtotal

(1 E) FG mt
€3 d

= Acy pg (R2 R7) + ¥ (1 - @) (Ro — R;)

p
T APf,empty + APf,rotor + AProtor (9)

S

Kolja Neumann, Sira Hunold, Mirko Skiborowski, and Andrzej Gérak Industrial & Engineering Chemistry Research 2017 56 (43), 12395-12405 DOI: 10.1021/acs.iecr.7b032. PCCC-8
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= Effect of Ro on pressure drop

* Pressure drop increases with Ro:
» 100%: 7.7-23.7 kPa

> 110%: 8.1-23.1 kPa
> 120%: 9.8-28.1 kPa

PCCC-8
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= Effect of Z on pressure drop

* Pressure drop reduces as Z increases:
» 100%: 8.7-26.2 kPa

> 105%: 8.1-26.2 kPa
> 110%: 7.5-20.5 kPa
> 115%: 6.9-18.3 kPa

CCCCCC
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Comparison of pressure drop in the RPB

Expamet Stainless steel wire mesh packing
packing
Pressure drop | Sandilya et | Sandilya et Agarwal et  Neumann etal
correlation al.(2001) | al.(2001) al. (2010) (2017)
Pressure drop (Pa) 19585 9118.52 8704.4 9663.26
Porosity 0.76 0.96
Surface area
(m2/m3) 2132 803

Wire Mesh: Lower pressure drop (=2x less) compared to Expamet

PCCC-8
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EGR, MEA concentration and rotor speed are key to RPB
absorber performance.

Best performance achieved with the design consisting of 2 RPB
absorbers, EGR and 75 wt% MEA i.e. above 90% and smaller
RPB size (up to 4 times smaller).

Porosity and surface area of packing are critical in RPB design.
Wire mesh could achieve =2x less pressure drop compared to
Expamet.

Wire mesh offers optimal balance between efficiency and
pressure drop

S

PCCC-8
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= Optimal Operating Conditions Identified
* Rotor Speed: 275-300 RPM offers the best balance between energy
consumption and cost.

- L/G Ratio: 0.9-1.0 kg/kg minimizes CO, capture cost while maintaining
efficiency.

« Reducing MEA solvent make-up by 10-20% could lower costs significantly
(~$68,000/yr savings).

* Economic Performance Insights

« CO, Capture Cost: $17.52/ton, competitive with alternative capture
methods.

« Total Annualized Cost (TAC): $4.01 million/yr, with major cost contributors
being MEA solvent, electricity and O&M.

Akinola, T., Otitoju, O., Oko, E., Wang, M. (2025), Recent advances, challenges and perspectives on rotating packed
bed technology in solvent-based carbon capture, Current Opinion in Chemical Engineering, Vol. 49, 101174 PCCC-8
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