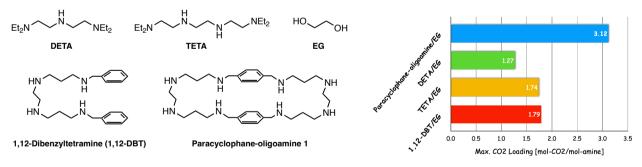


IEAGHG 8th Post Combustion Capture Conference

16th to 18th September 2025 Marseille, France

Evaluation of CO₂ Absorption Performance of Paracyclophaneoligoamine in Ethylene Glycol Solution


Nobuhiro Kanomata,^{a,*} Nao Senga^a

^aDepartment of Chemistry and Biochemistry, Waseda University, 3-4-1 Shinjuku-ku, Tokyo 196-8555, Japan

Abstract

Carbon dioxide capture and storage (CCS) is widely recognized as a key strategy for mitigating global warming in the 21st century. Our previous studies demonstrated that amine-ethylene glycol (EG) solutions exhibit excellent CO_2 absorption performance owing to EG's dual role in promoting carbonate formation and enhancing carbonate formation with these amines.¹⁾

In this study, we synthesized a cyclophane-based amine 1²⁾ bearing eight secondary amine moieties in its bridging chains as a promising candidate for CO₂ capture. The CO₂ absorption and desorption properties of 1 were investigated in an EG solution under simulated flue gas conditions (13% CO₂ in N₂). As a result, approximately 80% of its amino groups participated in CO₂ chemisorption, achieving a CO₂ absorption capacity of 3.12 mol-CO₂/mol-amine. This performance significantly exceeds those of DETA (1.27 mol-CO₂/mol-amine), TETA (1.74mol-CO₂/mol-amine), and 1,12-dibenzyltetramine (1,12-DBT) (1.79 mol-CO₂/mol-amine), thereby highlighting the superior CO₂ capture capability of paracyclophane-oligoamine 1.

- 1) Kanomata, N.; Hori, R. MRM2023/IUMRS-ICA2023 Grand Meeting, Kyoto, Dec. 2023.
- 2) Marek, P.; Rafal, G. Chem. Ber. 1990, 123, 405–406.

Keywords: paracyclophane-oligoamine; amine-ethylene glycol mixture; CO2 absorption and desorption; chemisorption; CCS

^{*} Corresponding author. Tel.: +81-3-5286-3193 E-mail address: kanomata@waseda.jp