Updates of MHI KM CDR ProcessTM

PCCC-8 16-18th September 2025 Masaya Sakaida

Mitsubishi Heavy Industries, Ltd.

Mitsubishi Heavy Industries (MHI) group

Mitsubishi Heavy Industries Group Profile

1884 Foundation 140 years history

77,778 Employees (Consolidated: As of Mar.,2025)

259 Group Companies (Consolidated: As of Mar., 2025)

Diverse Products

on Land, at Sea, in the Sky, in Space

6,684.0 bil. yen Order Received (FY2024, Consolidated)

4,657.1 bil. yen Revenue (FY2024, Consolidated)

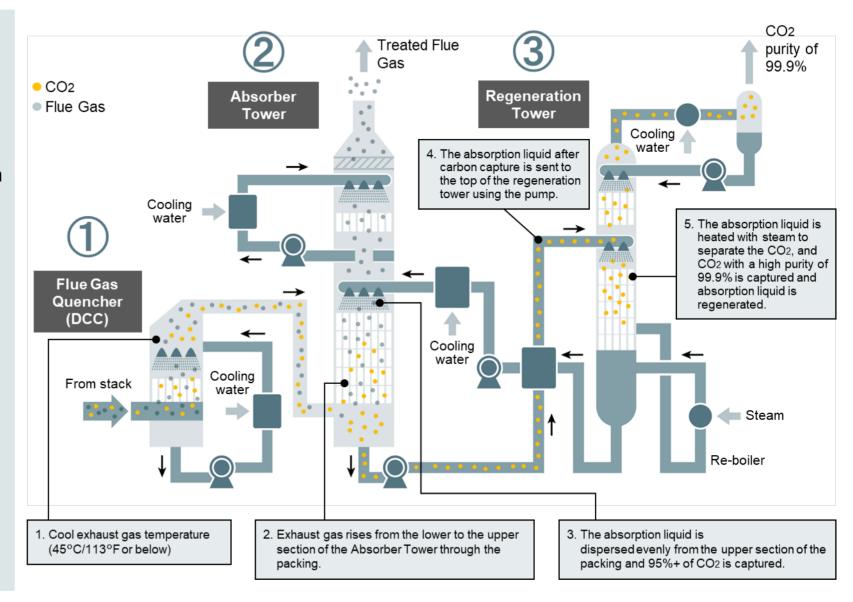
Mitsubishi Heavy Industries, LTD. - GX(Green Transformation) Solutions Segment

Business content

- Promote energy transition business
- Engineering solutions and after-sales service for carbon capture plant, chemical plant and transportation system

Turbocharger

to-Energy Metal Machinery


2

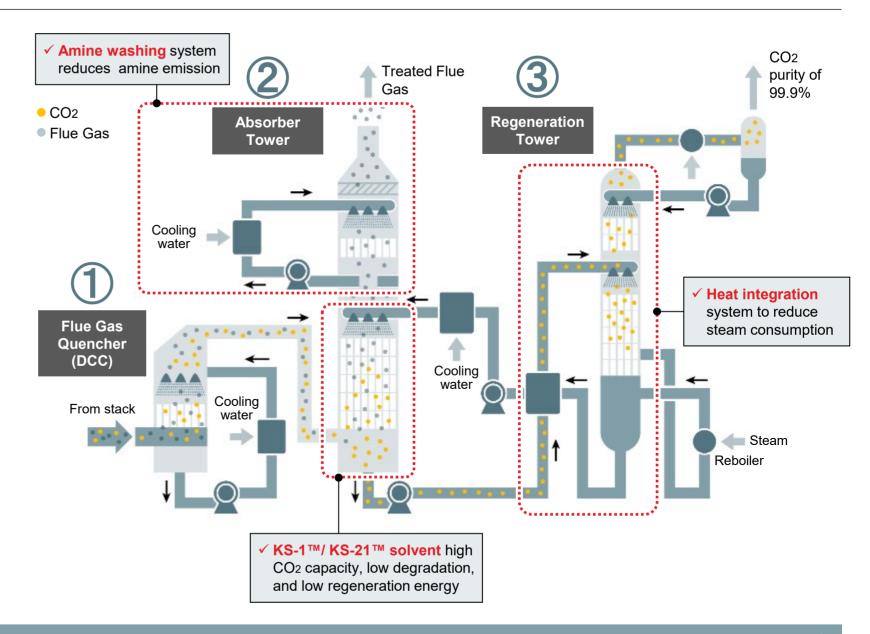
Technology with World's Top Share – KM CDR Process™

KM CDR Process™

- KM CDR Process™ = Kansai Mitsubishi Carbon Dioxide Recovery Process
- Amine-based technology
- Capable of capturing 95+% CO₂ from combustion gas (depending on source)
- Automatic load adjustment control (ALAC)
- Amine filtration and purification systems
- Tower design capability for even gas/liquid distribution

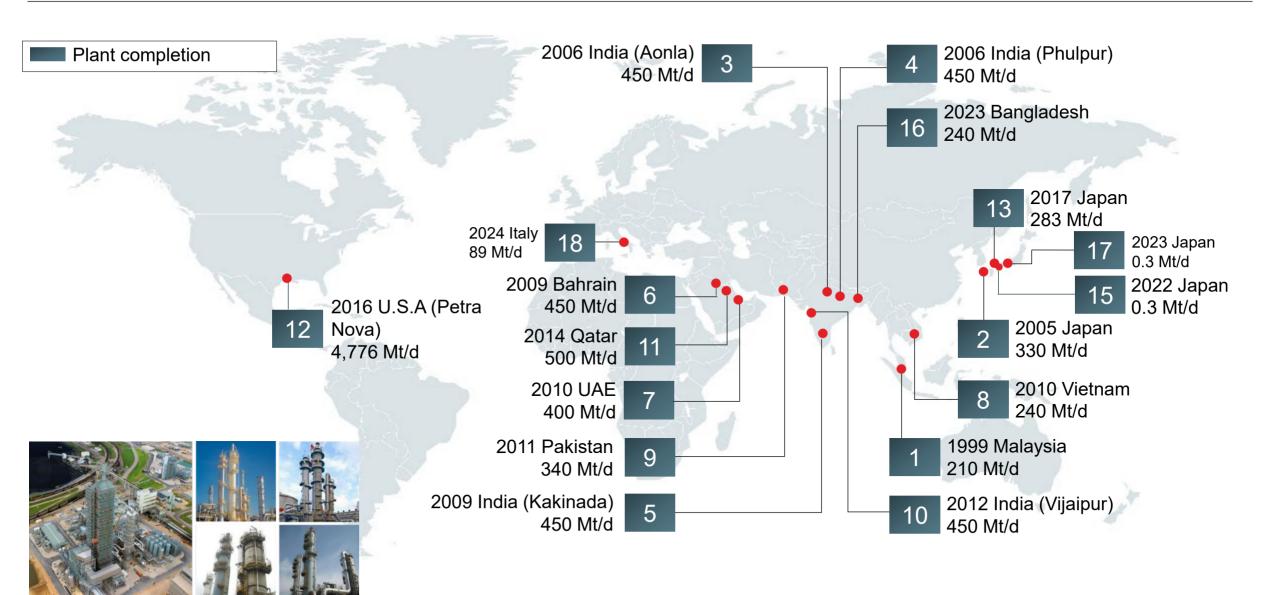
Unique features of KM CDR Process™

Three (3) primary technology of KM CDR Process™


- Proprietary solvent; KS-1™ / KS-21™
- Amine washing system reduces amine emission
- Heat integration system to reduce steam consumption

Low OPEX

- Low solvent make up frequency
- Low steam volume & electricity consumption


Low CAPEX

Related equipment capacity such as reboiler and pump is smaller

KM CDR Process™ - Worldwide Commercial Experience

KM CDR Process™ - Worldwide Commercial Experience

Petra Nova Project

The World's Largest Post-Combustion Carbon Capture Plant

EPC full turnkey project

- ✓ MHI has provided the world's largest carbon capture plant on coalfired flue gas delivered in December 2016 for Petra Nova Project
- ✓ Supported by DOE (U.S. Department of Energy) grant program (CCPI* Round 3) and Japanese government finance (JBIC / NEXI)

Project Formation	Consortium of MHI / Kiewit / The Industrial Company (TIC) MHI: Engineering and Procurement for Carbon Capture Plant Kiewit: Utility and balance of plant TIC: Construction	
Plant location	NRG WA Parish Power Plant (Thompsons, TX)	
Project owner	Petra Nova - partnership between NRG Energy and JX Nippon Oil&Gas Since 2022, full ownership under JX Nippon Oil&Gas	
Plant scale	240 MW _{eq}	
CO ₂ capacity	4,776 Mt/d (1.4 MMt/y)	

Carbon Capture Plant

*Clean Coal Power Initiative

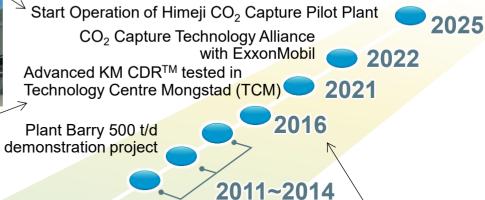
*U.S. Department of Energy "W.A. Parish Post-Combustion CO₂ Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

History of carbon capture technology development and up-scaling

Present

Pilot test 10t/d

Himeii CO₂ Capture Pilot Plant



Technology Centre Mongstad

Developed proprietary energy

Plant Barry 500 t/d

2006

Verification of applicability to

various carbon emission sources

In-house Pilot Plant in Nagasaki R&D center

1 t/d coal in-house pilot test at Hiroshima R&D Center (present transferred to Nagasaki R&D Center)

2003

Large absorber flow test at Mihara works in Hiroshima

2002

10 t/d coal pilot test at Matsushima

efficient process

1999

First

2008

Petra Nova (US) The world's largest commercial scale post combustion carbon capture plant

Developed KS-1™ and KM CDR Process™

1994

Pilot Plant in Plant Barry

Commercial Plant

Pilot Plant in Nanko 2 t/d pilot plant at Power Station KEPCO's Nanko Power Station

> Began R&D with Kansai Electric Power Co.

1990

FEED(Front End Engineering Design) : Basic Engineering conducted after completion of Conceptual Design or Feasibility Study

1991

Advanced KM CDR Process™ - Overview and Features

Advanced KM CDR ProcessTM

 MHI has developed upgraded process Advanced KM CDR Process™ and upgraded solvent KS-21™.

KS-21TM

KS-21[™] solvent features (vs. original KS-1[™])

- MHI demonstrated at Technology Centre Mongstad (TCM) carbon capture facility in Norway in 2021 and conformed the following features.
 - ✓ Lower degradation rate, longer solvent health.
 - ✓ Lower volatility, applicable to the strict European environmental regulation.
 - ✓ Lower energy consumption of CO₂ compressor.

Parameters	KS-1 TM	KS-21™
Volatility	100	50-60
Thermal degradation rate	100	30-50
Oxidation rate	100	70
Heat of absorption	100	85

Technology Centre Mongstad

Medium to large scale carbon capture plant

- Capacity: 200 t/d ~
- Leadtime: 24 ~ 36 months up to the capacity
- Order-made design for the customer's request
- Modular construction to minimize construction period
- Capability for up-scaling of carbon capture amount

CO₂MPACTTM Series

- Capacity: 0.3 ~ 200 or more t/d
- Leadtime: 12 ~ 24 months up to the capacity
- Standardized design optimized for small scale emission
- Compact design and short lead time
- Capability for verification with actual gas and small to medium scale carbon capture plant
- Established two lineups, "CO₂MPACT™ Full-Module" and "CO₂MPACT™ Mobile," to meet customer needs

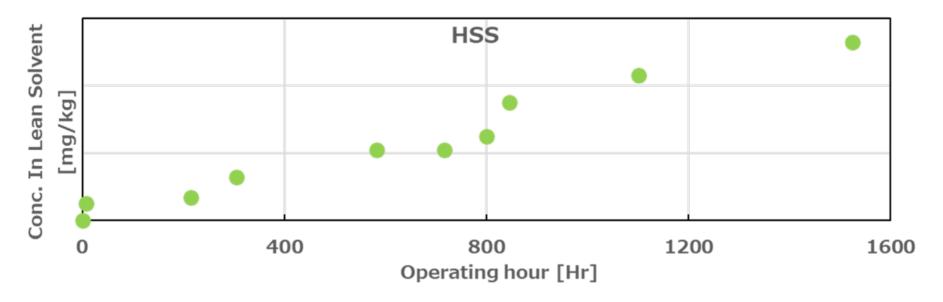
Applicability to various carbon emission sources

- We are further expanding the number of applications for carbon capture based on our core technology.
- CO₂MPACTTM will be modularized and digitized to meet the challenges and needs of customers.

As a leading company in Carbon capture, we offer a wide range of Carbon capture technologies.

	Power generation	World's largest carbon capture plant (as of 2023)
2	Biomass	License granted for first BECCS project of its kind in Europe
	LNG liquefaction	Feasibility Study/PDP for low-carbon production of LNG production
	Refinery	Basic design package for the UK's first low-carbon refinery
	Cement	Feasibility Study/ FEED awarded at the UK and Canada
	Steel	Technology verification on multiple emission sources in ironmaking process in Belgium and North America
	Shipping	Onboard carbon capture system verified in field (on an actual voyage)
	Waste-to- Energy	Technology verification on emission from WtE process
1	Gas Engines	Technology verification on CO2 capturing from internal Gas Engines and liquefaction
	Ceramic	World's first application in the ceramic manufacturing process
$\left[\bigcap_{H_2} \bigcap_{1,1} \left[\right] \right]$	Hydrogen	CO2 capture at the UK's largest blue H2 plant

Pilot Test Experiences of KM CDR Process™ / Advanced KM CDR Process™



No.	Year of Delivery	Country	Flue Gas Source	CO2 Capacity (t/d)	Purpose	Status
1	1991	Japan	Power Plant	2	Annual Test Campaign	On-going
2	2006	Japan	Power Plant	10	Impurity/Dust behavior	Done
3	2007	Japan	Natural gas fired flue gas	2	Long term operation with artificial gas turbine flue gas	Done
4	2008	Japan	Cement furnace flue gas	1	Verification for cement flue gas	Done
5	2010	USA	Power Plant	1	Verification for SO3 and emission	Done
6	2011	USA	Power Plant	500	Long term operation / Geological Sequestration	Done
7	2012	Italy	Power Plant	56	Verification for coal flue gas	Done
8	2012	Japan	Natural gas fired flue gas	2	Long term operation	Done
9	2018	USA	Power Plant	1	Solvent testing	Done
10	2020	USA	Power Plant	1	Solvent testing	Done
11	2021	Norway	Natural gas fired flue gas	100	KS-21 [™] demonstration test	Done
12	2021	UK	Biomass flue gas	0.3	Verification for Biomass flue gas	Done
13	2022	Japan	Waste to Energy plant flue gas	0.3	Verification for WtE flue gas	On-going
14	2022	Japan	Cement kiln flue gas	0.3	Verification for cement flue gas	Done
15	2022	Japan	Gas engine generator flue gas	0.3	Verification for gas engine flue gas	Done
16	2023	Canada	Cement kiln flue gas	0.3	Verification for cement flue gas	On-going
17	2023	USA	Biomass flue gas	0.3	Verification for Biomass flue gas	Done
18	2024	Belgium	Steel plant flue gas	0.3	Verification for steel plant flue gas	On-going
19	2024	Japan	Chemical recovery boilers at paper mills	0.3	Verification for Pulp and Paper Industry flue gas	On-going

Verification of applicability to various carbon emission sources

- ✓ MHI had conducted the mobile test for verification for cement flue gas
- ✓ Total 4000 hours of operation using actual cement exhaust gas was achieved
- ✓ The accumulation of HSS was observed. The validity of our calculation was confirmed from the result of accumulation rate.

Accumulation of Heat Stable Salts during mobile test

Nanko Pilot Plant

- ✓ MHI had conducted the Pilot Tests at the pilot plant installed at the Nanko Power Station since 1991
- ✓ Evaluated the CO₂ capture performance and emissions for KS-1TM and KS-21TM solvent
- ✓ The results were well validated with in-house process simulator.

Site	Nanko, The Kansai Electric Power Co.
CO ₂ Source	Natural Gas Boiler
Start up year	1991
Solvent	KS-1 TM / KS-21 TM Solvent
Flue gas CO ₂ content	Adjustable
CO ₂ Capture Rate	Adjustable

Nanko Pilot Plant

TCM Demonstration Test

- ✓ MHI has completed the demonstration test for CCGT flue gas and RFCC flue gas at Technology Centre Mongstad's carbon capture facility in Norway
- ✓ Achieved capture rate of around 95% for each flue gas
- ✓ Maintained at 95% CO₂ capture rate for each flue gas during the campaign

CO ₂ Source	CCGT, RFCC flue gas
Solvent	KS-1 [™] / KS-21 [™] Solvent
Flue gas flow rate	30,400 - 55,000 Sm ³ /h
Flue gas CO ₂ content	CCGT: 4 vol%, RFCC: 14 vol%
Regenerator pressure	0.30 - 1.58 barG
CO ₂ Capture Rate	More than 95%

Photograph courtesy of Technology Centre Mongstad

Himeji CO₂ Capture Pilot Plant

Start Operation of Himeji CO₂ Capture Pilot Plant at KEPCO

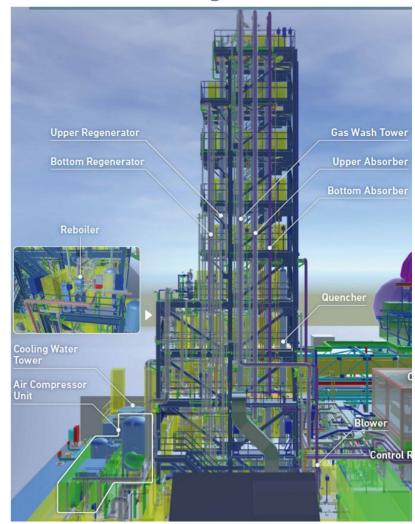
Himeji No.2 Power Station

✓ The new pilot plant was installed for R&D of CO₂
capture technology and will use flue gas from the
gas turbine at Himeji No.2 Power Station and start
operation in 2025.

✓ By demonstrating the next-generation CO₂ capture technology, the plant will accelerate R&D aimed at reducing environmental impact and costs, and further strengthen its competitiveness.

Himeji CO₂ Capture Pilot Plant

Himeji CO₂ Capture Pilot Plant



Features of Himeji CO₂ Capture Pilot Plant at KEPCO Himeji No.2 Power Station

✓ Inlet CO₂ concentration can be adjusted by recycling captured CO₂

- ✓ Solvent Reclaiming System is installed
- Absorber packing height can be changed

CO ₂ Source	CCGT flue gas
Start up year	2025
Solvent	KS-21 [™] Solvent
Flue gas CO ₂ content	Adjustable (5% -)
Regenerator pressure	Adjustable (- 1.5 barG)
CO ₂ Capture Rate	Adjustable

Himeji CO₂ Capture Pilot Plant

Carbon Capture project updates in Recent Start-up: Gas Turbine applications

ENI Ravenna CCS Project, Phase 1

Europe's First Post-Combustion Carbon Capture Plant with full value chain till storage starts Operation at ENI, Italy with MHI Technology

Project Formation	 Carbon Capture plant is installed at ENI's Casalborseti natural gas plant near Ravenna, Italy MHI is working in partnership with NEXTCHEM, MAIRE's subsidiary dedicated to the energy transition,
Key Feature	 Plant captures CO₂ from flue gas with the lowest concentration < 3% > 95% capture rate. First complete end to end solution from capture to storage.
CO2 Source of Emissions	Gas Turbine
CO2 capacity	89 t/d (25,000 tpa is envisaged to be injected into a depleted offshore gas field owned by ENI)

Carbon capture plant for Ravenna CCS (photo courtesy of Eni S.P.A)

Carbon Capture project updates in Recent Start-up: Fertilizer Plant application

BCIC Ghorasal Project

Largest fertilizer plant in Bangladesh with Advanced KM CDR ProcessTM for enhance urea production

Project Formation	 Working together with China National Chemical Engineering No7 Construction Co., Ltd., to install a fertilizer plant including carbon capture unit. Carbon Capture plant is installed at Ghorasal Polash Urea Fertilizer Project MHI uses its Advanced KM CDR ProcessTM using its new KS- 21TM solvent. 	
Plant Location	Bangladesh Chemical Industries Corporation (BCIC) plant located at Polash, Narsingdi, Bangladesh	
CO2 Source / Key Features	 SMR (Steam Methane Reforming) First commercial plant with KS-21™ solvent 	
CO2 capacity	240 t/d >90% capture rate	

Carbon capture plant for BCIC

Parameters Relative to KS-1™	KS-1™	KS-21™
Volatility	100	50-60
Thermal degradation	100	30-50
Oxydative degradation	100	70
Heat of reaction	100	85

Summary

- ✓ MHI developed Advanced KM CDR ProcessTM and new solvent KS-21TM
- ✓ MHI is offering the process to various industrial flue gas sources, including Refinery, LNG plant, cement/steel/ceramic making, hydrogen, etc.
- ✓ MHI evaluated the applicability to various industrial flue gas by conducting mobile test
- ✓ KS-1TM / KS-21TM solvent have been evaluated by Nanko pilot & TCM demonstration test
- ✓ Start Operation of Himeji CO₂ Capture Pilot Plant
- ✓ Start Operation of first commercial plant with KS-21TM solvent

MOVE THE WORLD FORW>RD