

Kemper County IGCC – Overview and Operational Summary

Landon Lunsford September 5, 2017

Agenda

- Major components and unique features
- Process block flow diagram
- Operational summary and statistics
- Remaining technical challenges
- Conclusions
- Next steps

Timeline and Safety

- Project groundbreaking
- Construction begins
- Combined-cycle in service
- First coal feed to gasifier
- Operations suspended
- Total project man-hours
- Total plant man-hours

June 2010 First half of 2011 Third quarter 2014 July 2016 June 28, 2017 41+ MM Recordable Incident Rate (RIR) = 0.42~2.5 MM RIR = 0.16

Kemper County IGCC Overview

Mine-mouth lignite

• 2x1 IGCC

- Two Transport Gasifiers (TRIG™)
- Two Siemens SGT6 5000F CTs
- One Toshiba steam turbine
- 65+% carbon capture
 - ~800 $lb_{CO2}/MWh_{net}\, or\,$ ~550 lb_{CO2}/MWh_{gross}
- 582 MW peak and 526 MW on syngas
- Heat rate 12,150 Btu/kWh_{NET}

• Byproducts (TPY)

- ~3,800,000 CO_2 used for EOR
- ~150,000 sulfuric acid
- ~19,000 ammonia

Kemper Lignite Composition					
		Average	Min	Max	
Heat Content	btu/lb	5,290	4,765	5,870	
Moisture	%	45.5	42	50	
Ash	%	12.0	8.6	17	
Sulfur	%	1.0	0.35	1.7	

Kemper Project Map

- ~70 miles transmission
- ~60 miles CO₂ pipeline (for EOR)
- ~5 miles natural gas
 pipeline
- ~30 miles treated
 effluent line

Kemper Block Flow Diagram Tested at PSDF Not Tested at PSDF Patented by Southern (Commercially Available) (Commercially Available) Company **GASIFIER ISLAND** AIR **CFAD** WSA SULFURIC ACID Fine Ash Cooling and ACID Process GAS LIGNITE Depressurization **GASIFIER** Low-Temp Syngas CO_2 and High-Temp Lignite High-SYNGAS Water-

Operational Summary

- Achieved fully integrated operation of entire IGCC
 - Both CTs produced power with syngas
 - Steam turbine produced power with superheated steam from the syngas coolers
 - On spec production of byproducts CO_2 , anhydrous ammonia, sulfuric acid
- First-of-a-kind commercial TRIG[™] gasification system
 - Availability as good or better than other gasification technologies during first year operation
 - 90% gasifier availability
- Availability following expected availability ramp
- Kemper operation suspended primarily due to dramatic decrease in price and forecast for natural gas
 - Natural gas prices and forecast decreased 60-70% since 2010 project approval

Coal IGCC Plant Syngas Production Availabilities

TRIG Advantages

- No internal burners / fuel injectors
- Longer refractory life
- Dry ash no molten slag or corrosive / erosive blackwater system
- Higher carbon conversion → less tar → less syngas cooler fouling

Key Operating Statistics

- Gasifier operation
 - 224 total days of lignite gasification
 - Achieved 100% gasifier design coal feed capacity
- Syngas cleanup/emissions
 - Met all environmental permit requirements
 - Achieved design 65% CO₂ capture and transport for Enhanced Oil Recovery (EOR)
 - On spec production of CO₂, ammonia and sulfuric acid
- CT operation on syngas
 - 73% capacity achieved at 170 MW
 - Siemens limited CT capacity on syngas to 70% until June 2017, then increased to 80%
 - 164,900 MWh generated with syngas

Inconsistent raw coal quality

- Frequently outside design range for both moisture and particle size
- Modifications in May-June 2017
 improved reliability
- Before modifications, sustained 80% gasifier coal feed capacity with <u>three</u> dryers
- After modifications, sustained 80% gasifier coal feed capacity with <u>two</u> dryers.
- Additional changes were being developed and implemented

Kemper Lignite Composition					
		Average	Min	Max	
Heat Content	btu/lb	5,290	4,765	5,870	
Moisture	%	45.5	42	50	
Ash	%	12.0	8.6	17	
Sulfur	%	1.0	0.35	1.7	

Refractory replacement in the gasifier seal leg outlet

- Refractory improperly installed in shop experienced significant and uncharacteristic spalling during drying, but construction schedule prevented refractory replacement
- Bottom sections replaced in situ during commissioning and worked well thereafter
- Upper section spalled from the seal leg, blocking ash removal and requiring periodic clean-out
- Refractory replacement scheduled for upcoming October 2017 outage would have eliminated significant spalling

Syngas cooler superheater tube leaks

- Numerous leaks developed at tube supports of Coil 5 on multiple superheaters
- Finite element analysis revealed insufficient tube thickness/design margin at tube support weld connections
- All Coil 5 tubes plugged in each train's Superheater II prior to June 2017
 - Sufficient heat transfer area remaining for full coal feed rates because less tube fouling than expected
 - Inner coils likely under less overall stress than Coil 5 per engineering evaluations
- No additional tube failures, but insufficient operating time to prove conclusively reliable

Excess sour water production from syngas scrubbers

- Damage to scrubber internals and design of chimney trays allowed excessive water bypassing to sour water system
- Sour water system overwhelmed with two gasifier trains at higher coal feed rates
- Chimney tray redesign scheduled for October outage would have resolved this issue

Salt formation in the Sour Water system

- High sour water pH preventing adequate separation of ammonia, CO₂ and H₂S
- Ammonium bisulfide salts forming in ammonia purification equipment, limiting capacity and reliability at high coal feed rates
- Acid and caustic injection changes in progress to increase pH control and improve separation

Conclusions

- Core TRIG[™] technology successfully demonstrated at commercial scale
 - Operated at 100% of coal feed design
 - Produced syngas suitable for power generation in the CT
- Kemper IGCC demonstrated with dual-train operation
 - Modifications required to sustain operation of both trains simultaneously and to achieve the long-term availability ramp
- Fuel price differential between natural gas and lignite was the primary reason for suspension of operations prior to making the identified modifications for sustained dual-train operation

Next Steps

- Evaluate and develop best practices and lessons learned from design, construction, startup and operations of the Kemper IGCC project
- Continue supporting DOE mission to advance clean coal and carbon capture technologies
 - Commissioning report with lessons learned
 - Final Full Project report with lessons learned
 - TRIG[™] reference plant with expected capital and operating costs for nextgeneration TRIG[™] IGCC
- Continue supporting development of clean coal technologies to ensure they are ready to serve energy needs where fuel costs and carbon capture credits make them economically competitive

Questions?

