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Membrane Technology

Inorganic 
Membranes

MMMs

Upper bound plot for CO2/CH4 for homogeneous, solution-processable polymeric 
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Results & Discussion

Impact of resolution: 8, 10, and 16 pixels/nm

Impact of REV: 240, 300, and 400 pixels

R8  and  REV300

In comparison with analytical models?

Up to 15% loading, all have the same behaviours.

Bruggeman: 1.43%

Cheiw-Glandt: 5.17%

Pal: 10.32%

Maxwell:14.25%

Relative errors:

(a) Assessing the influence of three different resolutions (nm/pixel) as well as the 
impacts of REV on the predicted permeability. (b) Comparison of our models with the 
analytical models. For part (a), all simulation are conducted for Pf /Pm=100 and ϕ = 20%.

Validation of the model
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permeability. (b) Comparison of our models with the analytical models. For part (a), all simulation are conducted for Pf 
/Pm=100 and ϕ = 20%.
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Results & Discussion

Impact of particle shape

Impact of loading

Impact of filler to polymer permeability ratio

The impact of loading fractions, ϕ on the permeability of the MMM 
containing filler particles with a Platonic structure, as compared to spherical 
particles, for Pf /Pm is equal to (a) 10 and (b) 100.

The impact of filler permeability relative to the polymer permeability, Pf /Pm, 
on the permeability of MMM for loading fraction, ϕ equal to (a) 10% and (b) 
20%.

Comparison of the inverse of tortuosity (1/τ) of Platonic 
particles and spheres for loading fractions obtained by 
open-source MATLAB code, TauFactor [14].

Ideal MMMs
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The impact of loading fractions, ϕ on the permeability of the MMM containing filler particles with a Platonic 
structure, as compared to spherical particles, for Pf /Pm is equal to (a) 10 and (b) 100.
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particles and spheres for loading fractions obtained by 
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Results & Discussion

The impact of filler permeability relative to the polymer permeability, Pf /Pm, on the permeability of MMM 
for loading fraction, ϕ equal to (a) 10% and (b) 20%.
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Impact of particle shape

Impact of loading

Impact of filler to polymer permeability ratio

The impact of loading fractions, ϕ on the permeability of the MMM 
containing filler particles with a Platonic structure, as compared to spherical 
particles, for Pf /Pm is equal to (a) 10 and (b) 100.

The impact of filler permeability relative to the polymer permeability, Pf /Pm, 
on the permeability of MMM for loading fraction, ϕ equal to (a) 10% and (b) 
20%.

Comparison of the inverse of tortuosity (1/τ) of Platonic 
particles and spheres for loading.
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Comparison of the inverse of tortuosity (1/τ) of Platonic particles and spheres for 
loading fractions.
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Impact of particle shape

Impact of loading

Impact of filler to polymer permeability ratio

The impact of loading fractions, ϕ on the permeability of the MMM 
containing filler particles with a Platonic structure, as compared to spherical 
particles, for Pf /Pm is equal to (a) 10 and (b) 100.

The impact of filler permeability relative to the polymer permeability, Pf /Pm, 
on the permeability of MMM for loading fraction, ϕ equal to (a) 10% and (b) 
20%.

Comparison of the inverse of tortuosity (1/τ) of Platonic 
particles and spheres for loading fractions obtained by 
open-source MATLAB code, TauFactor [14].
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Results & Discussion

Impact of sphericity on the selectivity increase

Impact of sphericity on the most compatible permeability between filler and polymer.   

Colour maps indicating the percentage increase in MMM selectivity for various particle 
shapes of (a) sphere, (b) icosahedral, (c) dodecahedral, (d) octahedral, (e) hexahedral, and 
(f) tetrahedral.

The MMM selectivity for a wide range of perm-ratio of faster 
gas (P1,f vs. P1,m) at constant polymer perm-selectivity of αm = 1 
and filler permselectivity of αf = 200 when the filler loading is 
ϕ=20% for all studies filler particle shapes.
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Results & Discussion

Color maps indicating the percentage increase in MMM selectivity for various particle shapes of (a) sphere, 
(b) icosahedral, (c) dodecahedral, (d) octahedral, (e) hexahedral, and (f) tetrahedral.
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Impact of sphericity on the selectivity increase

Impact of sphericity on the most compatible permeability between filler and polymer.   

Colour maps indicating the percentage increase in MMM selectivity for various particle 
shapes of (a) sphere, (b) icosahedral, (c) dodecahedral, (d) octahedral, (e) hexahedral, and 
(f) tetrahedral.

The MMM selectivity for a wide range of perm-ratio of faster 
gas (P1,f vs. P1,m) at constant polymer perm-selectivity of αm = 1 
and filler permselectivity of αf = 200 when the filler loading is 
ϕ=20% for all studies filler particle shapes.
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Results & Discussion

The MMM selectivity for a wide range of perm-ratio of faster gas (P1,f vs. P1,m) at constant polymer perm-selectivity of αm = 1 
and filler permselectivity of αf = 200 when the filler loading is ϕ = 20% for all studies filler particle shapes.

Ideal MMMs



Results & Discussion

Impact of particle arrangements

Impact of interface permeability

Impact of filler loading of 8 and 15%

Impact of defect types on Peff for different filler shapes — (a, b) spherical and (c, d) 
tetrahedral — is evaluated by examining variations in Pint.The flux intensity for various filler particle arrangements with particle 

shapes of (a−d)spherical and (e−h) tetrahedral. 
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Results & Discussion

Impact of defect types on Peff for different filler shapes — (a, b) spherical and (c, 
d) tetrahedral — is evaluated by examining variations in Pint.

Non-Ideal MMMs



Results & Discussion

Impact of interface permeability

Impact of the perm-ratio of the faster gas in the defect region (P1,int/P1,m) on the percentage increase in 
αmmm for (a) spherical and (b) tetrahedral filler particles

Non-Ideal MMMs
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Conclusions & future works

Platonic particles with lower sphericity can 
effectively improve the permeability of MMMs 
compared to the spherical fillers. 

01

At higher filler-to-polymer permeability ratios, a 
higher effective permeability is achieved with 
low-sphericity particles. 

02

The impact of particle shape becomes more 
pronounced at higher loading fractions and 
filler-to-polymer permeability ratios.

03

The lower sphericity in particles leads to higher 
MMM selectivity at a comparable perm-ratio of 
faster gas.

04

Assessing gas transport in MMMs through 
integrating voxelized structures is an efficient 
approach for studying geometric factors that 
influence MMM performance

05

Arrangement of filler particles, and the overlap of 
defect regions are two key sources of uncertainty 
in predicting membrane permeability and 
selectivity. 

The impact of interface thickness and filler volume 
fraction on membrane performance should be 
evaluated with consideration of filler shape. 

The accurate characterisation of the polymer-filler 
interface's incompatibility and its impact on the 
performance of MMMs extends beyond the scope 
of empirical predictive models or methods relying 
solely on experimentally derived fitting 
parameters.

The impact of filler particle arrangement within 
the polymeric matrix, along with the associated 
defect shapes and structures, can be accurately and 
effectively captured by integrating voxelised 
structures into our computational framework.
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interface's incompatibility and its impact on the 
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of empirical predictive models or methods relying 
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Thanks for your attention.
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