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Membrane Technology

Gas Mixture Separation
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Pros:
Operative flexibility
Low energy cost

Cons:
Need of materials in high performance



Membrane Technology

Performance Evaluation
Permeability
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Membrane Technology
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Upper bound plot for CO,/CH, for homogeneous, solution-processable polymeric
materials. Qian et al. 2020
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—e Material Desing —o Membrane —eMembrane Device  —o Membrane Process
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Research Statement

How to improve Permselectivity in MMMs?

Filler
arrangements

Interfacial
compatibility
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Filler Shape
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Filler Loading
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Metal-Organic Frameworks (MOFs), Covalent-Organic Frameworks (COFs), Metal-Organic Polyhedra (MOPs)
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How do the intricate relationships between the geometrical features of interfacial
defects and the arrangements of filler particles influence permselectivity?
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Methodology

Structure generation

Geometric expressions of particle

o Sets of edges, faces, and vertices.
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Methodology

Structure generation

Geometric expressions of particle

o Sets of edges, faces, and vertices.

900000

Tetrahedron Hexahedron Octahedron Dodecahedron  Icosahedron  Sphere
s=0.67 s=0.81 s=0.84 s=0.91 5$=0.94 s=1

o Voxel-based particle representation

resolution-dependent nature!

How to ensure about the resolution?

Deq :diameter of a sphere equivalent in
volume to a Platonic particle

Resolution: length of voxel/D,,
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Distribution algorithm

ocation Dete d T p Esssscesssst l Particle Rotated

The procedure of
the overlap

detection for the
j newly added

particle
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Filler particles with interfacial defect

(a) Initial structure




Methodology

—= Filler particles with interfacial defect

(a) Initial structure (b) Generation of each part of interphase layer
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—= Filler particles with interfacial defect

(a) Initial structure (b) Generation of each part of interphase layer (c) Voxelised structures
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—= Filler particles with interfacial defect

(a) Initial structure

~

(b) Generation of each part of interphase layer

/ Faces

Edges

-

(c) Voxelised structures

{/,,._- Ideal structure

Non ideal structure

(d) Final structure
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Polymeric matrix

Filler particles
Defect
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The Maxwell Stephan transport model
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Methodology

The Maxwell Stephan transport model
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Under weak confinement scenario

~Ji = PlisatD; — Vp;
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—Ji = pQisatD; —Vp;
pi
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Phases Diffusion correction for

the gas mixture
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—Ji = pQisatD; —Vp;

\ Pi,
~
P;
0D:
Jir = Z —Py (%) +Jjmp
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;
Phases Diffusion correction for

the gas mixture
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Inlet sidle
b :p2:§pinlet .
Outlet side
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Results & Discussion

Validation of the model

® Impact of resolution: 8, 10, and 16 pixels/nm

® Impact of REV: 240, 300, and 400 pixels

|

R8 and REV300

In comparison with analytical models?

® Up to 15% loading, all have the same behaviours.

® Relative errors:
Bruggeman: 1.43%
Cheiw-Glandt: 5.17%
Pal: 10.32%
Maxwell:14.25%



Results & Discussion

Validation of the model
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(a) Assessing the influence of three different resolutions (nm/pixel) as well as the impacts of REV on the predicted

permeability. (b) Comparison of our models with the analytical models. For part (a), all simulation are conducted for P,
/P,=100 and ¢ =20%.



Results & Discussion

Ideal MMMs
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The impact of loading fractions, ¢ on the permeability of the MMM
containing filler particles with a Platonic structure, as compared to spherical
particles, for Pf /Pm is equal to (a) 10 and (b) 100.



Results & Discussion

Ideal MMMs
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The impact of loading fractions, ¢ on the permeability of the MMM containing filler particles with a Platonic
structure, as compared to spherical particles, for P; /P,, is equal to (a) 10 and (b) 100.



Results & Discussion

Ideal MMMs

® Impact of particle shape
e Impact of loading

e Impact of filler to polymer permeability ratio
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The impact of filler permeability relative to the polymer permeability, P, /P,
on the permeability of MMM for loading fraction, ¢ equal to (a) 10% and (b)
20%.
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Ideal MMMs
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The impact of filler permeability relative to the polymer permeability, P; /P,,, on the permeability of MMM
for loading fraction, ¢ equal to (a) 10% and (b) 20%.



Results & Discussion

Ideal MMMs

® Impact of particle shape
e Impact of loading

e Impact of filler to polymer permeability ratio
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Comparison of the inverse of tortuosity (1/7) of Platonic
particles and spheres for loading.
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Ideal MMMs

® Impact of particle shape
e Impact of loading

e Impact of filler to polymer permeability ratio



Results & Discussion

Ideal MMMs
y_E,f 7/_P2,f oy =t , b

® Impact of sphericity on the selectivity increase 1~ 2~ m = f-
p Pl,m ])2,17! PZ,m ])2,f

® Impact of sphericity on the most compatible permeability between filler and polymer. : -
perm-ratio perm-selectivity




Results & Discussion

—o Ideal MMMs

ammm%
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Color maps indicating the percentage increase in MMM selectivity for various particle shapes of (a) sphere,
(b) icosahedral, (c) dodecahedral, (d) octahedral, (e) hexahedral, and (f) tetrahedral.



Results & Discussion

Ideal MMMs

® Impact of sphericity on the selectivity increase

® Impact of sphericity on the most compatible permeability between filler and polymer.
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The MMM selectivity for a wide range of perm-ratio of faster
gas (Piivs. Pin) at constant polymer perm-selectivity of am =1
and filler permselectivity of ar = 200 when the filler loading is
$=20% for all studies filler particle shapes.
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Ideal MMMs
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The MMM selectivity for a wide range of perm-ratio of faster gas (P (vs. P, ;) at constant polymer perm-selectivity of o, =1
and filler permselectivity of a; = 200 when the filler loading is ¢ = 20% for all studies filler particle shapes.



Results & Discussion

—o Non-Ideal MMMs

® Impact of particle arrangements
® Impact of interface permeability

® Impact of filler loading of 8 and 15%
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—o Non-Ideal MMMs
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Non-Ideal MMMs | |

® Impact of interface permeability y,=—=y, =—= o =—— g, =—21
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Conclusions & future works

Platonic particles with lower sphericity can
effectively improve the permeability of MMMs
compared to the spherical fillers.

At higher filler-to-polymer permeability ratios, a
higher effective permeability is achieved with
low-sphericity particles.

The impact of particle shape becomes more
pronounced at higher loading fractions and
filler-to-polymer permeability ratios.

The lower sphericity in particles leads to higher
MMM selectivity at a comparable perm-ratio of
faster gas.

Assessing gas transport in MMMs through
integrating voxelized structures is an efficient
approach for studying geometric factors that
influence MMM performance



Conclusions & future works

Arrangement of filler particles, and the overlap of

06 , ;
defect regions are two key sources of uncertainty
in predicting membrane permeability and
selectivity.

o7 ) The impact of interface thickness and filler volume

fraction on membrane performance should be
evaluated with consideration of filler shape.

o8 |) The accurate characterisation of the polymer-filler
interface's incompatibility and its impact on the
performance of MMMs extends beyond the scope
of empirical predictive models or methods relying
solely on experimentally derived fitting
parameters.

09 |} The impact of filler particle arrangement within
the polymeric matrix, along with the associated
defect shapes and structures, can be accurately and
effectively captured by integrating voxelised
structures into our computational framework.



Thanks for your attention.
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