

PICA project updates: Results of Long Term Operation of IHI advanced PCC system

7th.Sep.2017

Jun Arakawa^{a*}, Wonyoung Choi^a, Kenji Takano^a, Toshiya Matsuyama^a, Aaron Cottrell^b, Sanger Huang^b, Pauline Pearson^b, Anne Tibbett^b, Paul Feron^b, Paul Sertori^c

a: IHI Corporation
b: CSIRO Energy
c: AGL Loy Yang

IHI Corporation

Copyright © 2017 IHI Corporation All Rights Reserved.

1. PICA project

Organization and roles

PICA (<u>Post-combustion carbon capture</u>, <u>I</u>HI, <u>C</u>SIRO, <u>A</u>GL)

Australia Victoria

Loy Yang A Power Station & Loy Yang coal mine

MAGI

CSIRO

IHI Corporation

 Design, construction, operation and evaluation of the PCC pilot plant / IHI system

AGL Loy Yang Pty Ltd

- Operator of Loy Yang A Power Station using brown coal
- Host of PCC pilot plant in this power plant.

CSIRO (the Commonwealth Scientific and Industrial Research Organisation)

 Supporting design, site preparation, operation and evaluation of the pilot plant / CSIRO system

PICA Project technical aims

- Evaluate performance of advanced PCC system:
 - Energy efficiency performance,
 - CO₂ capture ratio,
- Evaluate effects of the long term operation:
 - Operation stability,
 - Reliability,
 - Breakdown products and treatments,
- Assess the environmental impacts :
 - Emission measurement/ analysis,
 - Evaluation of emission reduction technologies

Tasks & schedule

- Design, construction and commission of PICA pilot plant
- Operation using IHI's advanced system
- Operation using CSIRO's advanced system

2. IHI PCC technologies and PICA Pilot Plant

IHI PCC Technology performance by 20TPD P.P. IHI

 With IHI technologies, approx. 40% reduction in CO₂ capture energy was achieved compared to the conventional technology by 2014.

IHI 20TPD Pilot Plant

Schematics/specs of PICA Pilot Plant

(PICA pilot plant))	(Schematic view)	
Flue gas flow rate		80 Nm³/h		
CO ₂ capacity		0.4 t-CO ₂ /d		
Capture ratio		90%		
Absorber dia.		0.125 m	Conventional, IHI advanced, and	
Packing type		IHI proprietary packing	CSIRO advanced	
Process		Conventional process	Washing	ed
CO	onfigurations	-IHI advanced process -CSIRO advanced process	Tower Product CO2	
De	sign standards	JIS, AS, ASME	Condenser	
	nissions easurement	Continuous FTIR Continuous NDIR		
	Gasurement	Inlet Gas	Absorber Absorber Figure Absorber Blower Reboiler Reboiler Rich Amine Pump	
Copyright © 2017 IHI Corporation All Rights Reserved.				

MAGL

IHI

PICA Pilot Plant in Loy Yang A Power plant

Cumulative operation time

Cumulative operation time of PICA plant

Suspended Solids Measurements

- -Total suspended solids (TSS) values were well controlled.
- TSS in amine absorbent was kept below 10mg/L up to 5,000 hrs.

CO₂ capture Data Trends

Operation data of PICA plant with respect to operation time around 1000(left) and 5000 hours

- CO₂ capture ratio maintained approximately 90% up to 5,000 hours.
- The operation of PICA pilot plant using IHI solvent (ISOL-162) and IHI advanced PCC process was very stable.

MAGL

CSIRO

Formation of heat stable salts

-Formation of Heat Stable Salts(HSS) in the solvent was observed.

 In PICA plant, HSS concentration increased linearly. And the HSS formation rate of IHI absorbent(ISOL-162) was lower than MEA case.

^{*} Reference: Merched Azzi, et al. 2014 "Assessing Atmospheric Emissions from Amine-based CO₂ Post-combustion Capture Processes and their 14 Impacts on the Environment – A Case Study"

Emission studies for IHI process

Wash

Measurement of amine emissions from IHI system were conducted on different wash process conditions.

Pre-Treatmen Significant reduction in amine Tower emission was observed in specific Inlet Flue wash process conditions. Gas Stability of the washing process will be further examined.

MAGL

CSIRO

4. Ongoing Works for PICA pilot plant

- Further investigation on the last operation
 - Detailed analysis of organic compounds in the exhaust gas
 - Detailed analysis of degraded solvent
 - Evaluation of reclaiming process of degraded solvent
- Operation in 2017
 - PICA pilot plant is now under operation using CSIRO solvent and process.

CSIRO

Reclaiming test facility in IHI Corporation

* FY means Japanese fiscal year (from Apr. to Mar.)

5. Summary & Conclusions

- PICA project team(IHI, CSIRO and AGL Loy Yang) designed, constructed and operated PICA pilot plant in Loy Yang A Power Station, Australia.
- 2. The 5,000-hour-operation using IHI advanced system completed by the end of Mar. 2017.
- 3. CO₂ capture ratio of 90% was achieved and stable plant operation has been confirmed up to 5,000 hours.
- 4. Observed heat stable salts formation rate in ISOL-162 was considerably less than that of MEA.
- 5. Significant reduction in amine emission was observed in specific wash process conditions. Stability of the process will be examined.

The authors wish to acknowledge

- Brown Coal Innovation Australia Limited (BCIA)
- Australian National Low Emissions Coal Research and Development Ltd(ANLEC R&D)
- the Victorian State Government

Thank you for your attention !

