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Modeling and optimization goals

Goal: modeling and optimization of PZAS process design for
NGCC and other applications like cogeneration or fired boilers.

* What is the optimal design for a given flue gas and capture rate?
* What is incremental cost of >90% capture?

“Rainier” model:

« Equation-oriented model implemented in gPROMS Process®

» Validated using Independence™ model + pilot tests (NCCC 2023)
» Capital cost baseline from Mustang Station PZAS FEED

*P T Frailie II. Ph.D. Dissertation. (2014) University of Texas at Austin.



How good is good enough?
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» Vapor pressure correlations for only 3 apparent species
+ In(Pgo,) = 35.5 — 110541/, — 18.9a? + 4958 %/, + 10163 *°/;

Each model needs the right trade-off of model fidelity vs. tractability

Sources are all UT dissertations, Data: Hilliard (2008) [squares], Dugas (2009) [triangles], Xu (2011) [circles], and Nguyen (2013) [crosses]; Independence model: Frailie (2014)



PZAS Flowsheet
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Assumptions in absorber mass transfer model

Absorber and stripper implement medium-order rate-based model

Liquid phase uses apparent species representation
Independence uses true species representation

True Species Apparent Species
Defined in Aspen Properties®: CO, H.,O
O 2 2 . - ® / \ [CO2]totaI
/N / 0\ // S\ Defined in gPROMS™: |HN NH
HN NH HN N4< HoN NH N/ [H20) ot
\ / \ / o- \ / total

O — O — O
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o_/— —X . HoN N—% .

HCO, CO,

M S Walters et al. Ind. Eng. Chem. Res. (2016) https://doi.org/10.1021/acs.iecr.5b04379
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Assumptions in absorber mass transfer model 6

Overall mass transfer resistance is sum of resistances due to diffusion
In vapor film, rate-limited reaction in liquid, and diffusion in liquid:

Bulk

[
: o 1 1 1
Vapor | Liquid = + —
Pco2 C : Kg,COZae kg,Cazae kg,Cozae
[
\Y; l L :
F . F Model by Song!“! gives a, and k,,
: % o
Proro i What about liquid-side k7
| H20 * Rigorous k, requires detailed
[ . .
CO2, H20, | CO2, H20, modeling at interface
N2, 02 .

PZ » Surrogate model needed for Rainier,

Fi dapted f 1
ig. adapted from [1] \_I_/;|—/ based on Independence

Vapor Liquid
Film Film

[1] C Tsay et al. Appl. Energy (2019) htips://doi.org/10.1016/j.apenerqy.2019.113379 [2] D Song. Ph.D. Dissertation (2017) University of Texas at Austin
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PZ concentration adjustment

7

Modeling in Independence of NCCC natural gas campaigns (2019,
2023!4]) requires empirical correction of +8% to PZ concentration

Correction applied on absorber side of process results in correct NTU,

but creates mass balance error and shifts equilibrium

1.6 ,
NTU = —In(1 — Removal) - .. / » |
90% removal > 23 NTU ¢ | o
99% removal > 4.6 NTU I :
I -SE—— A S —— ——— e

g Pump-around | )
Z 038 & :
0.6 '

0.9 0.95 1 105 +8% PZ11

Sensitivity factor (CO, wt%, PZ wt%)
[1] T Gao. Ph.D. Dissertation. (2021) University of Texas at Austin [2] M Abreu. Ph.D. Dissertation (2024) University of Texas at Austin



VLE DOES NOT determine equilibrium within RateSep 8

In Independence, 3 pairs of forward + reverse kinetic reactions
define equilibrium at liquid interface

Rate constants for each are adjustable. The ratio effectively
determines equilibrium In a rate-based column stage:

8971 (4-24)

RT]

K .
k_i = Koq = l-az" = exp|
Values chosen so K., approximates the VLE:

o \Wetted wall column data used to fit kf

* k.. determined by (4-24) at a specified temperature T
* Different T, selected for absorber vs stripper to reduce error

P T Frailie ll. Ph.D. Dissertation. (2014) University of Texas at Austin.



kK. from Independence 9

Therefore, Rainier should match the kinetics of Independence but not
necessarily the equilibrium.

This brings us back to: k;, =7

Goals:
» Select surrogate model k; .o, = f(X) where X is physical properties

simulated in Rainier
* FIit model parameters to a suitable training set

» Estimate correct NTUs without affecting mass balance or equilibrium



kK, from Independence: surrogate model 10

Crossflow modell'l generates Surrogate model fitted using bulk
dataset of k/, , = ——%2 properties and adjusted loading:
9 (Pco,,i—Pco,) In(ky) = A+ B(a') + C(T,) + D(Pco, — Péo,)

Decreasing Py, ;
Constant a

Liquid Flow
I~
~ e 3

— = A O —

— o 5 ~
Gas — a 91 Sg
Flow a2 =

= O
- ~ @

S KR
r'\_‘ S .

\
1L
\
\

[1] M Abreu. Ph.D. Dissertation (2024) University of Texas at Austin



Model validation: NCCC 2023

NCCC steady states simulated to validate model at a different condition:

____________NCCC_____ Mustang FEED _

Total packing [m] 12 (6+06) 7.6 (2.7 +4.9)
Flue gas flow [kg/s] 1 430
PA ratio 1.9-24 3
Flue gas CO, 4% 4%
Lean loading 0.18 — 0.20 0.20
PZ molality 3.0-5.0 5.0

CO, removal 82.0 - 97.7% 90.0%



NCCC: baseline run 2023-03-17
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NCCC: hot solvent, high removal 2023-09-01 13
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Key needs:

* (p dependence on loading

* Robust flash model including HX with flashing
« Rate-based model at stripper conditions




Rainier Vapor-Liquid Equilibrium 15
Measured equilibrium pressures™ for loaded H,0O-PZ-CO, used as
basis of thermodynamic model.

* Vapor pressures P,,, = f(T,a)
d(InPj)

. . A
For consistency, AH,,;,= —R (/)

+ Represents experimental data well with a simple set of equations,
— Custom foreign object subroutine needed to solve VLE flash

*Q Xu. Ph.D. Dissertation (2011) University of Texas at Austin



Desorber mass transfer model

Absorber: Stripper:
1 1 1 1 1 1
T T - =7—+
Ky co,Qc kg,(:o2 Ue g,c0,%e Ky co,Qe kg,ca2 Ue kL,C()2 Ue

In absorber, reactions are rate-limited. , -, represents both rate-
limited reactions and diffusion.

In stripper, reactions at interface are instantaneous. k, -, represents

diffusion only. Therefore, in the stripper all quantities are calculated by
Song mass transfer model”

*D Song. Ph.D. Dissertation (2017) University of Texas at Austin



Conclusions

* Equation-oriented model with rate-based mass transfer and
appropriate simplifications accurately represents absorber
e <2% error in NTU prediction for NCCC pilot plant cases

» Greater error in T profile predictions: <5°C for Rainier vs <2°C for
Independence (Abreu, 2024)

» Surrogate model for k, -, does not require simulating boundary
layers and interfacial properties

* VLE flash is challenging in equation-oriented models, and further
work is needed to make full-flowsheet model solve reliably for
optimization tasks
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VLE DOES NOT determine equilibrium within RateSep 20

MDEA+ H,O0+CO, - MDEAH™ + HCO; Equation 4-8
PZ +H,0+CO, - PZH" + HCO; Equation 4-9
MDEA+ PZ + CO, — MDEAH " + PZCOO™ Equation 4-10 F orwa rd
2PZ +CO, — PZH" + PZCOO" Equation 4-11 Kl n et | C
MDEA+ PZCOO™ +CO, — MDEAH " + PZ(CO0)> Equation 4-12
2PZCOO™ + CO, — PZ(COO)* + H*PZCOO" Equation 4-13
MDEAH™ + HCO; — MDFEA+ H,0+ CO, Equation 4-14
PZH"™ + HCO; — PZ + H,O+ CO, Equation 4-15
PZCOO™ + PZH™ —>2P7 +CO, Equation 4-16 Reve rse
PZCOO™ + MDEAH ™ — MDEA + PZ + CO, Equation 4-17 K| n et | C
PZ(COO)* + H*PZCOO™ — 2PZCOO™ +CO, Equation 4-18
MDEAH* + PZ(COO0)> — MDEA+ PZCOO™ + CO, Equation 4-19
PZCOO™ + PZH* <> H*PZCOO™ + PZ Equation 4-20
MDEA + PZH" <> MDEAH"* + PZ Equation 4-21 Equ|||br|um

MDEA+ HCO; <> MDEAH™ + CO;” Equation 4-22 P T Frailie 1. Ph.D. Dissertation. (2014) University of Texas at Austin.



VLE DOES NOT determine equilibrium within RateSep 21

Rate constants for each can be adjusted by setting £, and /:

—E, 1 1

k=loexp[2 G- (4-29)
ref
Ratio determines K,:
k ~AG°
k—i = Koo =[1;a;" = exp| —1 (4-24)

Values chosen so K., approximates the VLE:
* Wetted wall column data used to fit k¢
* k.. determined by (4-24) at a specified temperature

P T Frailie Il. Ph.D. Dissertation. (2014) University of Texas at Austin.



VLE DOES NOT determine equilibrium within RateSep 22

Equation (4-23) assumes K., = A+ /7

For equilibrium calculations, Independence uses (3-2):

B
K, =A+—+CnT+DT Equation 3-1
AG°  AG° —AH® AH? 1%AC  LACS
-InK,, = =— ~ o —— 1 j PdT—j —dT .
RT RT, RT  T; R ;R Equation 3-2

This creates an inconsistency between K, in a rate-based column
stage vs K., in an equilibrium flash

The error grows further from T,

P T Frailie Il. Ph.D. Dissertation. (2014) University of Texas at Austin.



AEHREL ] 23
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Results from parameter estimation (old method)
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K. from Independence: result

IS0 == :\
H20 ~7 - |
w |
= 500 - / i
S |
0 250 1/ IR
G O S R R T
G S : €O, f-m-m" l
o, ] YLl it
' O —
4 :
=1 -250- | N
2 !
C — N ~___Ind. Rainier
S —500- 40
(0)
5 Nio CO, Capture 90.0% 90.4% \
_7 1 Ntot,lnd. \
>0 co; CO, NTU 2.3 2.34
o Ni’Ot, Ind. :
H->O I
_1000 i | | | I | | | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Position

1.0



CO, vapor pressure: how Independence was made

Partial Pressure CO, [bar]
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CO, vapor pressure: how Independence is used
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Long-Term Test 1: 2023-03-07 to 2023-03-31
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NCCC: baseline run 2023-03-17
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NCCC: hot solvent, high removal 2023-09-01 30
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NCCC: low molality 2023-09-23
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Thermodynamics 32
New basis: vapor reference state using IGL, with all the nonideality
contained in the AH,,,,

This Is one approach used by Aspen to calculate liquid H departure:

*}E *-,?—H o *,L" *-,?:H

Simplifies to: Hi = H{ — AyapH;

Note: it is called AH of “vaporization” for all the components but it is
really “"desorption” for CO, (and PZ) since reactions are involved



Thermodynamics

HiL — HLV — AvapHi
Where to get A, H;"

For thermodynamic consistency, derive from vapor pressure

Thermo is built around correlations for P,,,, = f (T, a)

* H,0: Antoine equation for pure water, assume ideal behavior
« PZ and CO,: very different from ideal, use empirical fits

Xu measured equilibrium pressures for loaded H,0-PZ-CO,

Q Xu. Ph.D. Dissertation (2011) University of Texas at Austin



Thermodynamics
Vapor pressure:

11054 2
€Oz _ 1 . . 2 04 04
P, /p.... €xp(35.3 p— —189a% + 4958 %/ +10163% /)
P 2
Pp”=%*[p  exp(=123+21.6InT, +20.2a —18174% /1)
Ho AW - 1730
P, =%" [7c9107(8.07 39

x© and x" assume that all CO, is complexed with PZ:

Pz

P X w X
x5 = ——and x" = ——

H-> O



Thermodynamics

d(InPj)
0(Y/7)

Heat of vaporization: AHy,,= —R

AHC 2= R(11054 — 4958a — 10163a?)

vap

AH,7,= R(21.6T, — 18174a*)

AH 29 = R(1730%
(1==7/1,)°

vap

)



Thermodynamics

L _ gV
Hi — Hi o AvapHi
Sum over components:

H, = H," (T, P,x) — 2 x; AHLq,,
i
Vapor H from IGL property pkg call:
HV — HI}/')P(TV'PJY)
Now the enthalpies for each phase are consistent:
Ni = Ny, = ha,(TY = TH)

o(F HL) _0(FyHy)
0z 0z

L _
NH X Velement —



Absorber parameter estimation

ln(ké’COZ) — (1 — (L

min Error = Wl[‘ATL‘ +W2[\ATV\ + 2 Wi[|AFV,i| + W5 |A%removai
e z z i=C0,,H,0 Z

1. Mustang FEED design case simulated in Independence
2. Independence profiles loaded into gPROMS model

3. Optimization sets decision variables ¢4, ¢, using objective function
above (steady-state point optimization using CVP_SS solver)



Absorber parameter estimation: CO, removal
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Absorber parameter estimation: temperature profile 39
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How good is good enough?
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How good is good enough? 41

Solid lines from activity coefficient (e-NRTL) model representing
many electrolyte species, with 74 adjustable parameters®.

Dashed lines generated by:

In(Pgo,) = 35.5 — 11054 1/, — 18.9a2 + 4958 %/, + 10163 %"/,

Each model needs the right trade-off of model fidelity vs. tractability

*P T Frailie II. Ph.D. Dissertation. (2014) University of Texas at Austin.
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