

Whole CCU chain 3MWth demo project with detailed NOX measurements

A french decarbonation initiative

Partners

Observing members & potential end-users

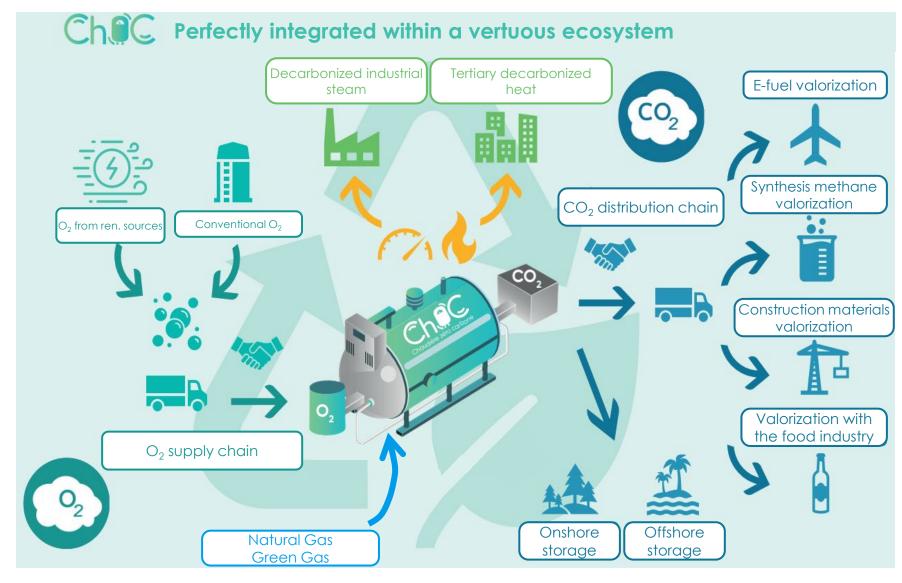
Ch0C: « Chaudière **Oxycombustion bas Carbone** »

- Oxycombustion fire-tube boiler
- CO₂ emissions reduction > 90%
- Capacity: $1MW_{th} < P < 25MW_{th}$

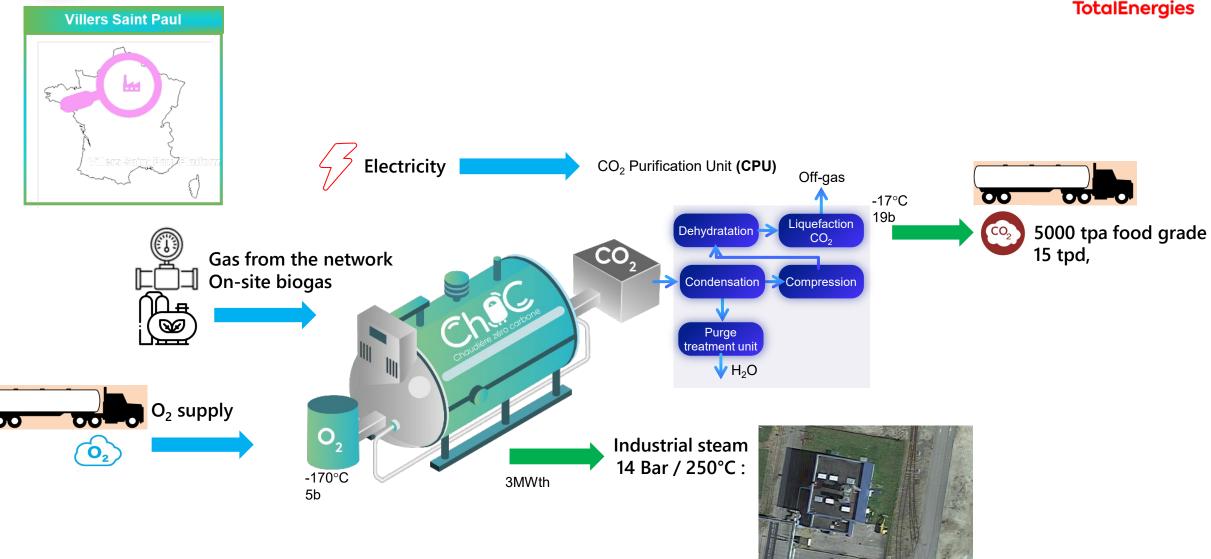
Objectives

Design, manufacturing & testing of a 3MW_{th} oxycombustion boiler on an industrial site (Villers-Saint-Paul)

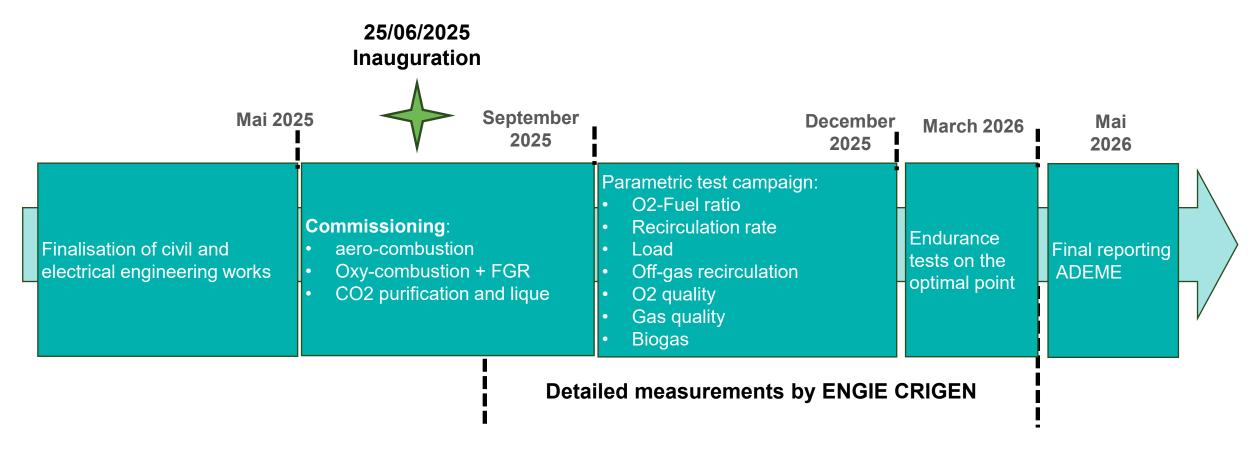
Technical challenges


- Low-NO_x oxyburner
- NO_x in purification unit

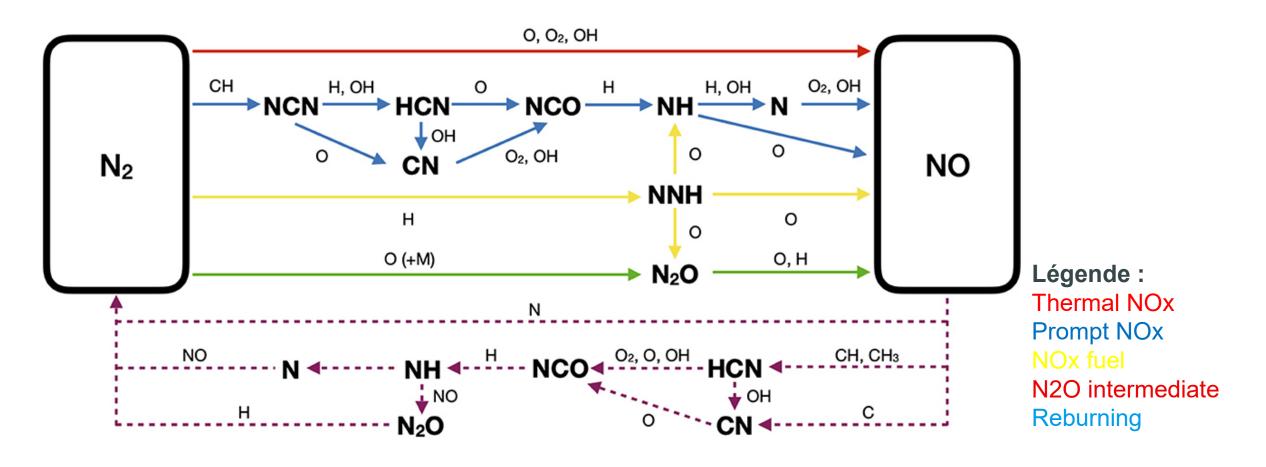
A virtuous ecosystem



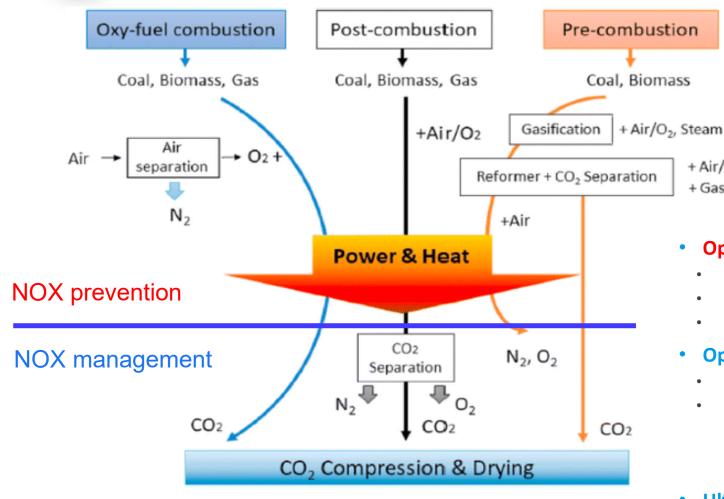
The demonstration project



Project progress & planning



NOX complex formation



In all Combustion types

Optimising combustion

- Internal and External recirculation
- Fuel, O2 and FGR premixing
- Fuel staging

+ Air/O₂, Steam

+ Gas, oil

Optimising CO₂ capture process

- NO₂ is a poison for amine and leads to an increase in amine consumption
- NO₂ crystalizes at higher temperature (-11°C) than CO₂ liquefaction and requires specific pre-treatment for cryogenic CO₂ separation processes

Ultra low NOx requirement for CO₂ transportation and storage

It corrodes drastically compressors / piping and drastic limitation are given for transportation/storage:

Example: 1.5 ppm NOx v in Northlight CO₂ capture project.

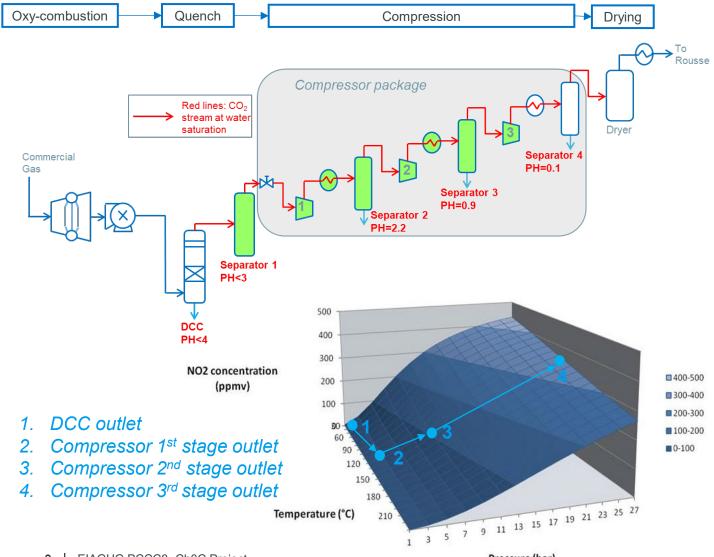
A challenge for the CCUS value chain

			Northen Ligths	
		2022	2024	2025
		Liquide	Liquide	Liquide
CO ₂	%v.		> 99.81	> 99.81
H₂O	ppm mol	≤ 30 ppm mol	≤ 30 ppm mol	≤ 30 ppm mol
H ₂	ppm mol	≤ 50	≤ 50	≤ 50
N ₂	ppm mol	-	≤ 50	≤ 50
Ar	ppm mol	-	≤ 100	≤ 100
CH ₄	ppm mol	-	≤ 100	≤ 100
СО	ppm mol	≤ 100	≤ 100	≤ 100
O ₂	ppm mol	≤ 10	≤ 10	≤ 10
H₂S	ppm mol	≤9	≤9	≤1
SO _x	ppm mol	≤ 10	≤ 10	≤ 10
NO _x	ppm mol	≤ 10	≤ 1.5	≤ 1.5
NH ₃	ppm mol	10	≤ 10	≤ 10
Amines	ppm mol	≤ 10	≤ 10	≤ 10
Méthanol	ppm mol	-	≤ 30	≤ 30
Ethanol	ppm mol	-	≤1	≤1
Total VOC	ppm mol	-	≤ 10	≤ 10
Glycol	ppm mol	-	TEG pas acceptable MEG ≤ 0.005 ppm mol	MEG < 0.2 TEG < 0.2
Ethylene	ppm mol		≤ 0.5	≤ 50
Ethane	ppm mol		≤ 75	≤ 75
Aliphatic (C3+)	ppm mol		≤ 1100	≤ 1100
BTEX	ppm mol	-	≤ 0.5	≤ 0.5
Total aldéhydes	ppm mol	Formaldehyde ≤ 20 Acetaldehyde ≤ 20	Formaldehyde ≤ 20 Acetaldehyde ≤ 20	Formaldehyde ≤ 20 Acetaldehyde ≤ 20
HCN	ppm mol		<100	<100
Hg	ppm mol	≤ 0.03	≤ 0.0003	≤ 0.0003
Cadmium + Thallium	ppm mol	≤ 0.03	moved to solids	-
Particule size	um	-	≤1	≤1

Food spec.:

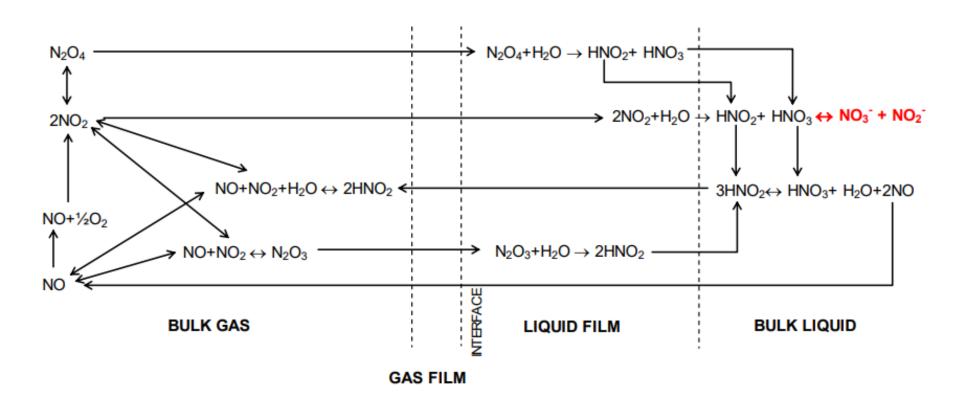
► TABLEAU 1: CRITÈRES DE CONCENTRATION POUR LA NORME EIGA (CO₂ LIQUIDE)

Composé	Concentration
CO ₂	▶ 99.9% v/v min.
Humidité	► 20 ppm v/v max
Ammoniac	► 2.5 ppm v/v max.
Oxygène	► 30 ppm v/v max.
Oxydes d'azote (NO/NO ₂)	▶ 2.5 ppm v/v max. de chaque
Particules	► 10 ppm m/m max.
Résidus organiques non volatils (huiles)	▶ 5 ppm m/m max.
Total des hydrocarbures volatils (correspondance méthane)	► 50 ppm v/v max. dont 20 ppm v/v max d'hydrocarbures non-méthaniques.
Acétaldéhyde	▶ 0.2 ppm v/v max.
Hydrocarbures aromatiques	▶ 0.02 ppm v/v max.
Monoxyde de carbone	► 10 ppm v/v max.
Méthanol	► 10 ppm v/v max.


Les critères de la qualité technique (pour usage en froid ou chimie) varient selon les procédés.

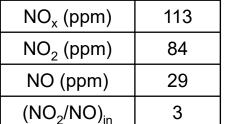
Standardization efforts are underway within CEN/TC 474's WG1 group to establish a European specification for CO₂ quality.

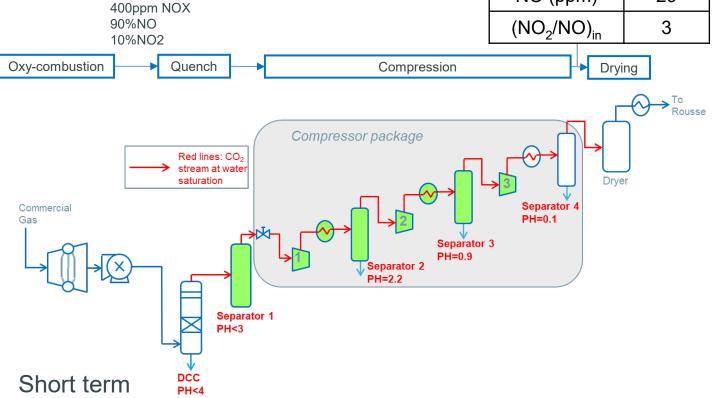
Lacq experience



3nd stage compressor (14/01/2010)

Lacq experience



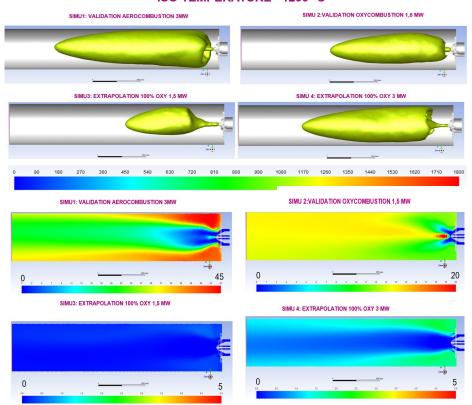

NO oxydation into corrosive products

Lacq experience

- Reduce liquid carry over from DCC
- To stay always above dew point

Long term

- To select the right metallurgy for compressor
- To encourage ultra low NOX burner dev.

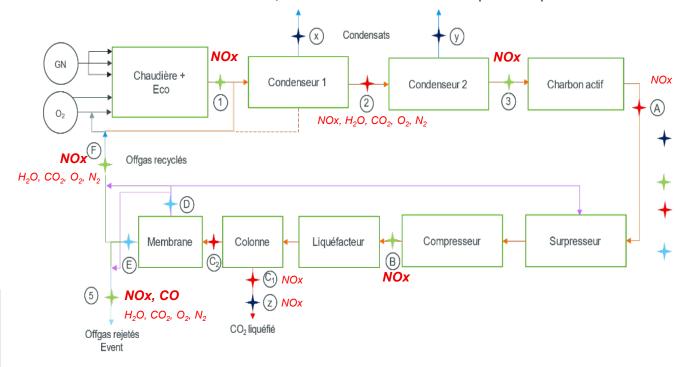


TotalEnergies

CFD

17 equations EDC model - NOx in post treatment (thermal, prompt: NO/NO_2)

ISO TEMPERATURE =1200 °C



SIMULATION	NOx (ppm) mesure	NOx (ppm) CFD
SIMU 1: base case aerocombustion 3 MW	25	29
SIMU 2: base case oxycombustion 50% 1.5 MW	16.5	14
SIMU 3: extrapolation oxycombustion 100% 1.5 MW	NA	1
SIMU 4: extrapolation oxycombustion 100% 3 MW	NA	2

N₂ variation in oxygen and natural gas ChOC pilot includes N₂ injection for testing various composition in natural gas (0 to 8%) and in oxygen (0 to 5%)

NOx measuring campaign

A specific N_2 / NO / NO_2 measurement chain will be implemented to validate NOx formation/ reduction on each of the process phases.

11 points throughout the entire process

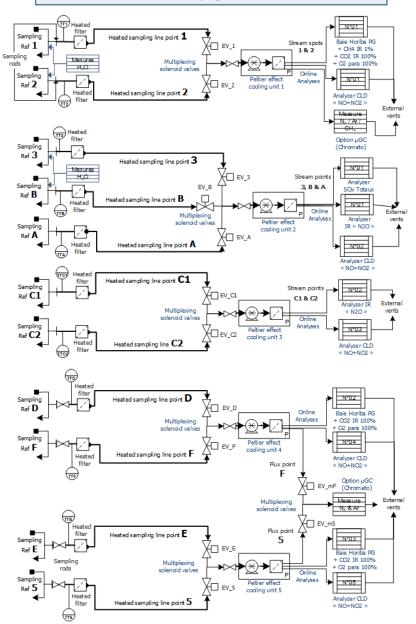
		CH0C boi	ler projec	t : Operatir	ng condition	ns, gas type	matrices a	nd expected	d NOx cont	ents		
Measurement	identification	1	2	3	Α	В	C1	C2	D	E	F	5
		Outlet BW	Outlet BW	Outlet VMB	VMB	VMB		Proce ss	VMB (4)			
Location of the	mea suring spots	economizer	economizer	condenser	post activated carbon bed	Downstream compressor	Liquified CO2 from column	Gas from column's outlet	Membrane outlet	Membrane outlet	Recycling offgas	VMB final Event
Measureme	nt frequency	Permanent	Permanent	Permanent	Occasionally	Permanent	Occasionally	Occasionally	Occasionally	Occasionally	Permanent	Permanent
	— Schedule meter (mm)	CORTEN steel sheathed tube : diam 300 mm	CORTEN steel sheathed tube : diam 300 mm	existing tapping for measurement with GC (DN15 with 15x21 inox valve)	existing tapping for measurement with GC (DN 15 with 15x21 inox	existing tapping for measurement with GC (DN15 with 15x21 inox	existing tapping for measurement with GC (DN15 with 15x21 inox	existing tapping for measurement with GC (DN15 with 15x21 inox value)	existing tapping for measurement with GC (DN15 with 15x21 inox	existing tapping for measurement with GC (DN15 with 15x21 inox	1 measuring tap for GC to add (DN 15 with 15x21 in ox valve)	1 measuring tap for GC to add (DN15 with 15x21 inox valve)
Availabl	e space	~ 1m above the economizer outlet	Close to internal wall (volume ~ 0,5m each side)	VMB	∨мв	VMB	VMB	VMB	VMB	VMB	VMB	VMB
Acces	sibility	height ~ 2,5 m (A bove boiler)	Height ~ 3.5m (possible with	VMB	30 cm from ground	VMB	VMB	VMB	VMB	VMB	VMB	VMB
Sup	port	existing support to use for probe	existing support to use for probe	VMB	VMB	VMB	VMB	VMB	VMB	VMB	VMB	VMB
Tempera	ature (°C)	85 - 105	20 - 70	4	40	40	-25	0	15	15	15	15
Pressure into	process (bar)	Patm +/- 10mbar	Patm+/- 10mbar	P _{atm} +/- 10mbar	Patm+/- 10mbar	20 barg	20 barg	20 barg	20 barg	20 barg	Patm +/- 10mbar	Patm+/- 10mbar
Flow measurement	kg/h	0 - 5350	0 - 1000	0 - 1000	0 - 1000	0 - 1000	0 - 600	0 - 400	0 - 400	0 - 400	0 - 400	0 - 400
ranges expected	Nm3/h	0 - 3500	0 - 600	0 - 600	0 - 600	0 - 600	0 - L00	0 - 200	0 - 200	0 - 200	0 - 200	0 - 200
Adaptated Flow	meter to identify			Х							Х	Х
Compounds	s to analyze			Expected	raw composition	s in % by mass a	ıd target measur	ement ranges in	relation to mass	flow rates		
H2O	Expected rate	11,5% — 42,9%	1,8 - 13%	< Point 2	< Point 2	< Point 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Range considered	0% - 100%	0 - 20%	0 - 20%	0 - 20%	0 - 20%	-	-	-	-	-	-
CO2	Expected measurement rate	54,7% — 85,8%	84,1% — 95,2%	> Point 2	> Point 2	> Point 2	99,9% environ	71,8% — 91,9%	81,3% — 95,5%	46,5% — 91,9%	81,3% — 95,5%	46,5% — 91,9%
	Range considered	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%	0% - 100%
N2	Expected rate	0,7% - 7,8%	0,9% — 8,6%	similar than point 2	similarthan point 2	similarthan point 2	qq ppm	4% — 15,6%	1,8% — 9,2%	0,8% - 43,2%	1,8% - 9,2%	0,8% — 43,2%
142	Range considered	0% - 10%	0% - 10%	0% - 10%	0% - 10%	0%- 10%	< 0,1%	0 - 20%	0% - 20%	0% - 50%	0% - 20%	0% - 50%
02	Expected rate	1,2% — 1,8%	1,3% — 2,7%	similarthan point 2	similarthan point 2	similarthan point 2	qq ppm	2,5% — 12,9%	1,7% — 12,9%	1,5% — 26,9%	1,7% — 12,9%	1,5% — 26,9%
	Range considered	0% - 10%	0% - 10%	0% - 10%	0% - 10%	0% - 10%	< 0,1%	0% - 20%	0% - 20%	0% - 30%	0% - 20%	0% - 30%
NOx compounds analysis:	Expected rate	0,0013% - 0,0019%	0,0015% - 0,0031%	similar than point 2	similarthan point 2	similarthan point 2	qq ppm	0 ,0017% - 0,0834%	0 ,0017% - 0,0834%	0,0017% - 0,0834%	0 ,0017% - 0,0834%	0 ,0017% — 0,0834%
(NO, NO2 > NOx)	Range considered	0 - 0,01%	0 - 0,01%	0 - 0,01%	0 - 0,01%	0 - 0,01%	<0,1%	0 - 0, 1%	0 - 0,1%	0 - 0, 1%	0 - 0,1%	0 - 0, 1%
SOx analysis	Expected rate	To be defined		To be defined	-	To be defined	-	-	-	-		-
SOX dildiySiS	Range considered	To be defined	-	To be defined	-	To be defined						-

260m sampling lines 30 measuring devices 5 hubs

Sampling lines: From process (tap) to the analysis systems

sampling rod + heated filter

Regulated heated line


Moisture condensation system (cooling unit)

EIAGHG PCCC8- Ch0C Project

	CH0C Pro	oject: Multip	olexed analyt	ical strategy for	reference	& de	tailed campa	igns
	Brand	Model	Measured Gases	Technologies	Quantity		Additional Equipment	Quantity
oject	Vaisala	нмѕ	H2O	Thin-film capacitive	4		Heated filter	4
systems deployed into the CHOC Project	Horiba	PG250 (+2 PG350)	O2, CO, CO2, SOX, NOx eq NO	Paramagnetical NDIR, CLD	4		Heated sampling line	19
the CF	EcoPhysics	CLD700	NO, NO2, NOx	Chemiluminescence CLD	6		Sampling Line total lenght	260 m
into t	Megatec	42i	NO, NO2, NOx	Chemiluminescence CLD	1		Sampling Rod	6
oloyed	M&C	GEN-TWO	CO2 (100%)	NDIR	2		Peltier Cooling unit	5
ns de	Siemens	Ultramat 22	CO2 (100%)	NDIR	3		T°K (sensor)	11
syster	Siemens	Ultramat 22	CH4	NDIR	1		Electrovalves	13
ment	Servomex	Model 572	O2 (100%)	Paramagnetical	4		Industrial PC	2
Measurement	Inficon	Fusion	N2, Ar, CO2	-Gas Chromatograph	1		Webserver	1
ž	Megatec	42C	N2O	IR Correlation	2		Data acquisition module	2
	Multiplexing c	arried out on 5	groups: points (1	& 2) ; points (3, A & I	B) ; points (C1 &	& <i>C2)</i>	; points (D & F) ; p	oints (5 & E)

Sampling and analysis strategies for the CH0C Boiler project : Detailed campaigns (V25/03/25)

126 condensate samplings

- 1. Referenced sampling point **X**: 1 measurement created on the condenser collection line, downstream the boiler.
- 2. Referenced sampling point Y: 1 measurement implemented downstream of the VMB activated carbon bed.

							Co	ndensates	analyses	strategy							
СНОС								Media: N	atural Gas								BG
		Essais M	SI					Pa	rametrical te	ests					E:	ssais LD	Essais MSI
Project	Aéro	Oxy+Liq	Qualif/réception	FA1	FA2	0x1	GN2	VAP1	VAP2	VAP3	FGR1	Rec1	Liq1	Liq2	Charge fixe	Charge variable	Qualif/réceptio
M1-A	0																
M1-B		0															
M2-A		0															
M2-B			4x + 4y														
M3-A				3x + 3y	0												
М3-В						3x + 3y	0										
M4-A								2x+2y	1x+1y	1x+1y	0						
M4-B												3x + 3y	0	0			
M5-A															0	0	
M5-B															0	0	
M6-A															0	0	
M6-B															0	0	
M7-A																	4x + 4y
M7-B																	
M8-A																	
M8-B																	

Analyse 1	pH, hardness, conductivity, NO ²⁻ , NO ³⁻ , NO ^{3-N} , NO ^{2-N} , HNO ₂ , HNO ₃ , CO ₃ ²⁻ , Total Organic Carbon (COT), metals (Cr ³⁺ , Ni ²⁺ , Al ³⁺ , Fe ³⁺), dissolved gases (CO ₂ , O ₂), MES & SO ₃ ²⁻ , SO ₄ ²⁻ , H ₂ SO ₄ , only in case of SOx identified into the flue gas
Analyse 2	pH, NO ²⁻ , NO ³⁻ , NO ^{3-N} , NO ^{2-N} , HNO ₂ , HNO ₃
Analyse 3	pH, NO^{2-} , NO^{3-} , NO^{3-N} , NO^{2-N} , HNO_2 , HNO_3 : only in case of no ability to establish a model within the results from previous tests.

Analyses 1+2+3						
Total: Flacons to						
~ 42 samples	be analyzed					
Analyses 1 (16)	48					
Analyses 2 (12)	36					
Analyses 3 (14)	42					
TOTAL (3)	126					

To provide accurate physico-chemicals measurement, all the aqueous samplings standardly led in the CH0C process are integrating a complemental step by filling all the container dedicated for each species to determine (between 6 & 10 according to the analysis).

All analyses will be achieved by an external specialized laboratory.

Containers dedicated to a full analysis

The demo project is open for visit and collaborations. Results will be published

Key take away

-Setting-up a full

NOX measurement

along the CCU

chain

Testing apromising ultra lowNOX burner

-Agile and
Collaborative Team
from various
companies

Questions?

sarah.juma@totalenergies.com
livia.pereiratardelli@natrangroupe.com
soizic.esnault@naldeo.com
giampaolo.maio@engie.com
frederic.fallot@engie.com

Disclaimer and copyright reservation

Definition - TotalEnergies/ Company

The entities in which TotalEnergies SE directly or indirectly holds an interest are separate and independent legal entities.

The terms "TotalEnergies", "TotalEnergies company" and "Company" used in this document are used to refer to TotalEnergies SE and its affiliates included in the scope of consolidation. Similarly, the terms "we", "us", "our" may also be used to refer to these entities or their employees. It cannot be inferred from the use of these expressions that TotalEnergies SE or any of its affiliates is involved in the business or management of any other company of the TotalEnergies company.

Disclaimer

This presentation may include forward-looking statement within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of TotalEnergies that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events.

TotalEnergies does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company's financial results is provided in documents filed by TotalEnergies with the French Autorité des Marchés Financiers and the US Securities and Exchange Commission.

Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

Copyright

All rights are reserved and all material in this presentation may not be reproduced without the express written permission of TotalEnergies.