

Deep Removal of CO_2 & InnoVative Electrification concepts

Effect of Solvent Aging on the Performance of CESAR1 at Highest Capture Rates of 98.0-99.9%

<u>Peter Moser</u>, Georg Wiechers, Sandra Schmidt, RWE Power AG Yamid A. Gomez Rueda, Didjay F. Bruggeman, Peter van Os, Juliana Monteiro, TNO Diego Pinto, Debadrita Ganguly, Hovyu

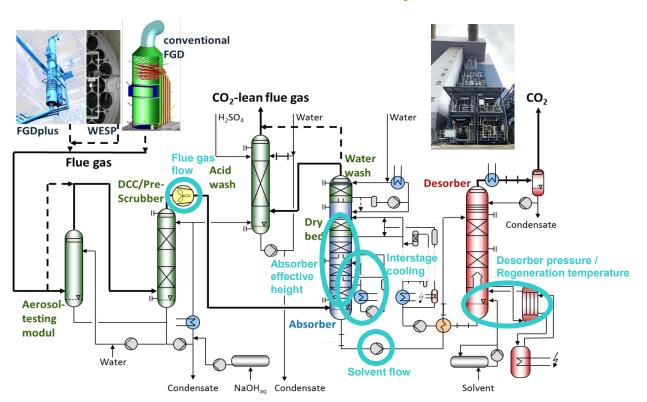
18th September 2025, Session 6C - High Capture/Pushing PCC Limits, PCCC-8, Marseille, France

Objectives of the 14 months testing of highest CO₂ capture efficiencies at the capture pilot plant at Niederaussem

- Confirm technical feasibility of achieving deep removal using amine-based solvents with thermal regeneration, real flue gas, 24/7 operation:
 - long-term tests

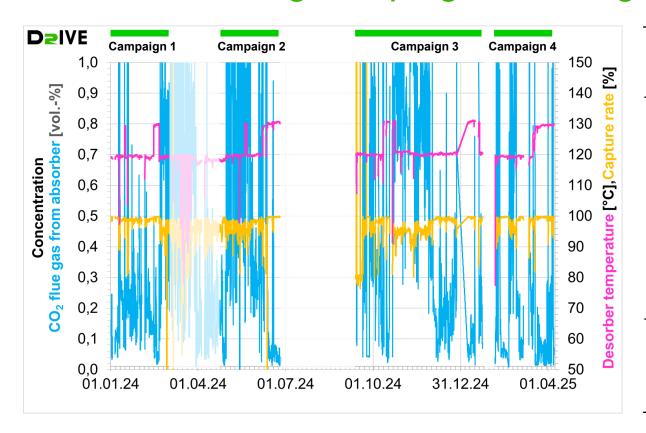
- Assess the impact of deep removal in energy demand, emissions, solvent degradation, and operability for the CESAR1 solvent:
 - holistic performance analysis

- Update models for the Technical Economic Analysis (TEA) and Life Cycle Analysis (LCA):
 - highest capture efficiency is not for free, analysis of the trade-off



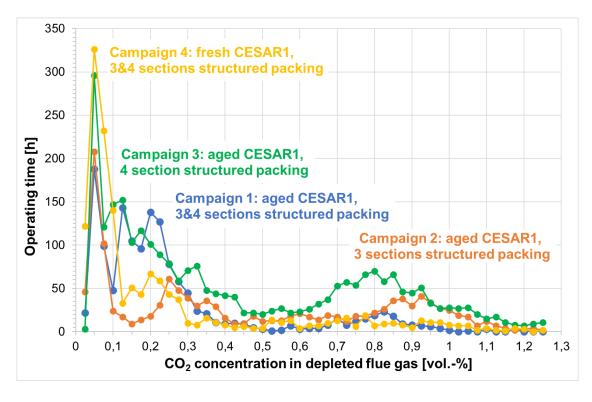
Deep removal with thermal regeneration at the capture pilot plant at Niederaussem – 24/7 operation without extra components or reclaiming

- Flue gas source: 1,000 MW lignite-fired power plant
- Solvent: CESAR1 (blend 3.0 M AMP/1.5 M PZ)
- Flue gas composition: 14.5 vol.-% CO₂, 5 vol.% O₂
- Calculation capture rate: Absorber balance calibration gas for IR analyser is a mixture of 99.98 vol.-% N₂ and 200 ppmv CO₂
- Campaign 1: testing 3 and 4 active packing sections
 Campaign 2: testing 3 active packing sections
 Campaign 3: testing 4 active packing sections
 Exchange of the solvent inventory before start of
 Campaign 4, after 15,700 testing hours
 - Campaign 4: testing emission control configurations



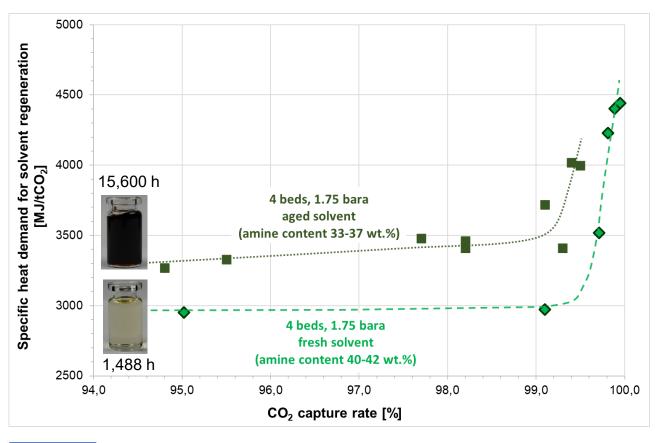
Overview testing campaigns with highest capture efficiencies >98%

Operating hours	Campaign 1	Campaign 2	Campaign 3	Campaign 4
Capture rate >98.0% [h]	1,011	588	1,234	1,006
Desorber temperature >128.0°C [h]	154	454	450	469
Total testing time [h]	1,214	975	2,044	1,196
Average CO ₂ capture efficiency entire campaign [%]	98.30	96.68	96.88	98.52



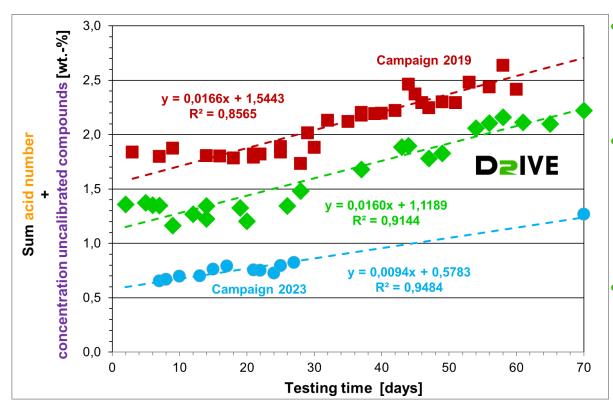
Longer, non-interrupted testing periods with capture efficiencies >99%

- More than 2,100 operating hours during the four campaigns with residual CO₂ concentration in the depleted flue gas <1,000 ppm
- Highest capture efficiencies have been achieved in non-interrupted longer test periods:
- Campaign 2: at 130.5°C regeneration temperature
 193 hours: 99.69%, 436 ppm
- Campaign 4: at 129.1°C regeneration temperature
 292 hours: 99.70%, 539 ppm
- Campaign 4: at 119.5°C regeneration temperature
 100 hours: 99.75%, 514 ppm



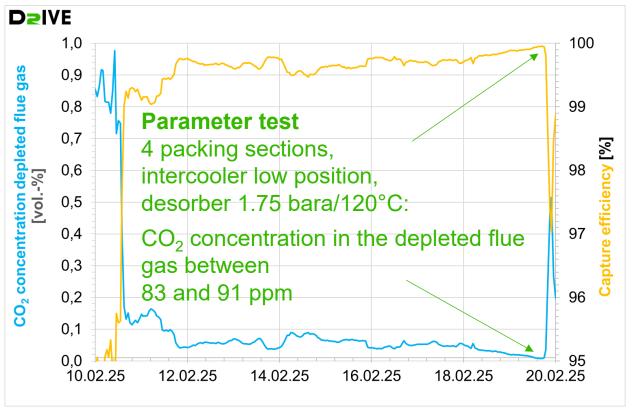
Capture rate & Specific Reboiler Duty for fresh and aged CESAR1

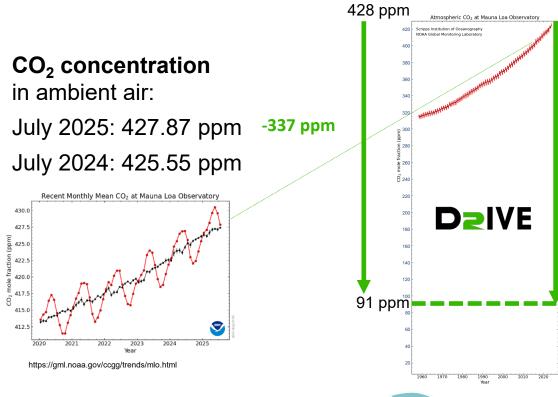
- Lower amine content of aged CESAR1 increased the specific reboiler duty up to a capture rate of 99.0% by 30% compared with 90% capture rate
- For fresh CESAR1 the specific reboiler duty is almost constant up to 99.0% capture efficiency
- For capture efficiencies >99.0% we see a strong increase of the reboiler duty



Comparing degradation of fresh CESAR1 depending on capture efficiency

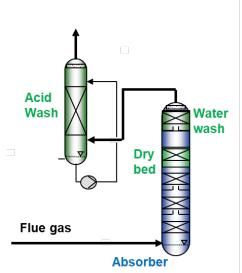
- Slope of the sum of the acid number and the concentration of uncalibrated compounds as a measure of solvent degradation
- No significant change of the accumulation of degradation products in the fresh solvent caused by the capture efficiency >98% compared with 90-95%
- Despite four testing campaigns with more than 5400 operating hours, continuous operation over 6 months at high capture efficiency is needed to evaluate degradation behaviour

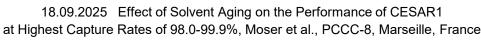




Highest capture efficiency achieved: 99.95% - CO₂ content in depleted flue gas 91 ppm - 50% higher Specific Reboiler Duty than at 90% capture efficiency

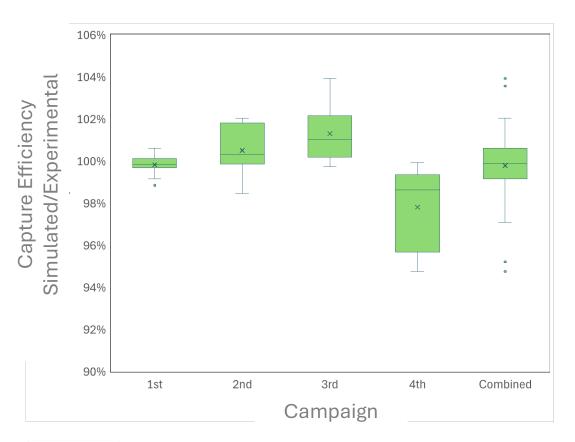
18.09.2025 Effect of Solvent Aging on the Performance of CESAR1 at Highest Capture Rates of 98.0-99.9%, Moser et al., PCCC-8, Marseille, France





Emission control – Dry bed and acid wash with pH value 4 to 5, 98.82% capture efficiency

- Combination of Dry bed (OASE aerosoneTM) and acid wash effectively reduced the emissions well below 1 mg/m³
- NH₃ emissions show highest dependence on pH value
- Power plant load affects emissions due to temperature effects in the absorber



Process simulation with ProTreat® - CO₂ capture efficiency

- CO₂ capture efficiency calculated based on measured inlet liquid and gas specifications, and reboiler duty
- Majority of the data is calculated within 2% deviation
 - few runs reaching up to 5% deviation
- 4th campaign seems to produce larger deviations compared to the previous campaigns
 - median is kept within the 2% deviation
 - Deviations 4th campaign under investigation

highest

lowest

emissions

Conclusions and Outlook

- The feasibility of deep CO₂ removal has been demonstrated in four campaigns at the capture pilot plant at Niederaussem.
- More than 3,800 operating hours with capture rates >98% and
 CO₂ concentrations in the depleted flue gas <100 ppm have been achieved.
- Emission mitigation technologies are available to control the emissions.
- Simulations with ProTreat[®] are able to represent the experimental data regarding capture rates and volatile emissions well for aged CESAR1.
- Deep removal means an environmental and economic trade off regarding high CO₂ capture efficiency, energy demand and cross-media effects.
- A comprehensive TEA and LCA will provide a holistic assessment for different use cases, based on the results of the six-months testing campaign on solvent degradation at deep removal conditions.

lowest amine degradation and waste formation

Acknowledgements

This research was funded by CETPartnership, the Clean Energy Transition Partnership under the 2022 CETPartnership joint call for research proposals, co funded by the European Commission (GAN°101069750) and with the funding organizations detailed on https://cetpartnership.eu/fundingagencies-and-call-modules

Thanks to the

Netherlands Enterprise Agency (RVO)

and the

Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen (MWIKE)

for funding of this work

Thank you for your attention

FOLLOW US ON SOCIAL MEDIA

www.drive-co2.eu