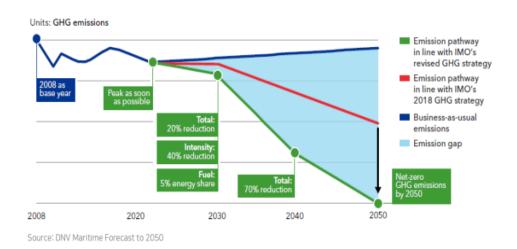

Performance Evaluation of Amine-Infused Resin (AIR) for LNG and Process Optimization through Simulation

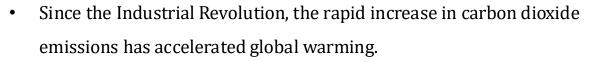
Chelim Min, Mina Hwang, Colin D. Wood, Yutaek Seo†

Sustainable Energy Network Lab.

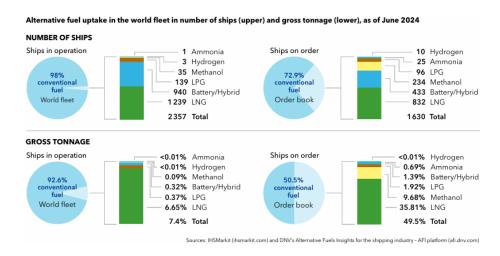
Dept. of Naval Architecture and Ocean Engineering College of Engineering Seoul National University asd578300@snu.ac.kr

Table of Contents

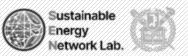



- 1 Introduction
- 2 Experiment
 - 1) Experimental setting
 - 2) Experimental result
- 3 Process Simulation
 - 1) Model description
 - 2) Simulation result
- 4 Conclusion

Introduction


Background

- Globally, there is a growing movement to reduce carbon emissions.
- In line with this trend, the shipping industry has set a target to achieve net-zero emissions by 2050.
- Accordingly, various studies are being conducted to reduce the use of fossil fuels, the primary source of carbon dioxide emissions.



^{*} Maritime Forecast to 2050, DNV(2024)

- The use of low-carbon and carbon-free fuels is emerging as a promising alternative.
- Among orders for eco-friendly fuel-powered vessels,
 liquefied natural gas (LNG) accounts for approximately 50%,
 representing a significant proportion.

Introduction

Background

- LNG produces about 20% less CO₂ compared with conventional fossil fuels, which is why it is considered a relatively eco-friendly fuel.
- However, the shipping industry is now facing strict carbon emission regulations.
- At the 83rd session of the Marine Environment Protection
 Committee (MEPC), incentives for low-emission vessels were considered.

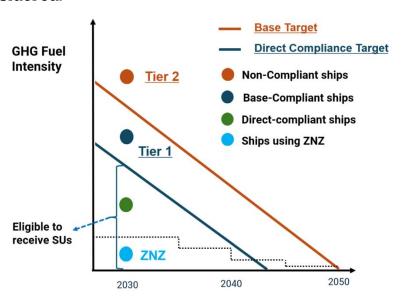
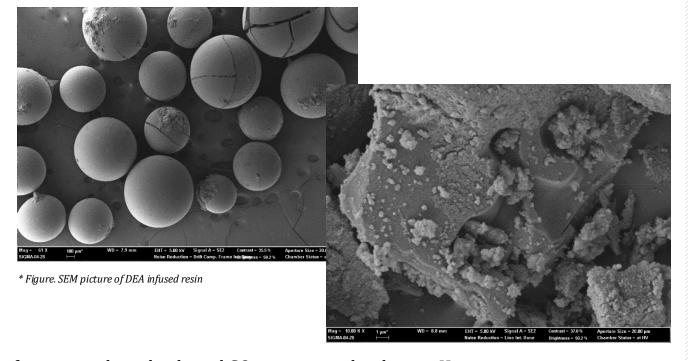


Figure 4. Conditioning and Capture equipment locations for 1 ton per hour capacity.

- Even small amounts of carbon dioxide generated during vessel operation need to be addressed.
- Consequently, the demand for on-board CO₂ capture is increasing.
- However, ships have limited space and energy, more research is required to develop practical solutions.


^{*} Korean Register, IMO NEWS Flash(2025)

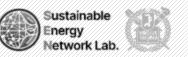
Introduction

Objective

- ${\it *Figure. SHI's Ship with OCC system}$
- SHI(Samsung Heavy Industries) successfully demonstrated the first amine-based onboard CO₂ capture technology in Korea.
- However, chemical absorbents have inherent challenges such as high regeneration energy requirements.
- To overcome these limitations, adsorbents are being considered as alternatives.
- Adsorbents offer lower regeneration energy demand and higher durability, making them more suitable for onboard CO₂ capture systems.
- In fact, Jung et al. (in progress, 2025) evaluated the performance of an amine infused resin, showing promising results under CO₂ 15 % condition.
- Experiments were conducted using amine-infused resin capable of both chemical absorption and physical adsorption.

Find the optimal operating condition of Adsorbent for OCC and Optimization through Simulation

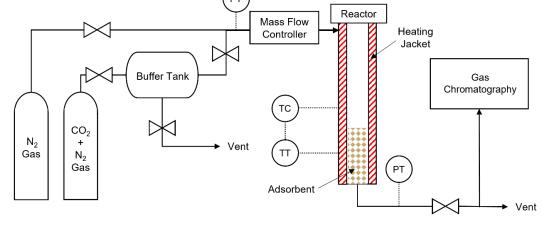
MEA / DEA Infused Resin Experiment – Experimental Apparatus



^{*} Table. Specification of Experimental Setting

	Specification
Reactor	 Tubular Size: ½" (id 13.1 mm) * 200 mmL DP/DT: 5 bar/ 120 °C Material: 316SS
Heat	 Range : ~ 150 °C Band
Pressure	Back Pressure Regulator
Mass Flow Controller	 Placed at inlet and outlet of the reactor Range: ~500 sccm
Gas Chromatography	Column : Porapak-N

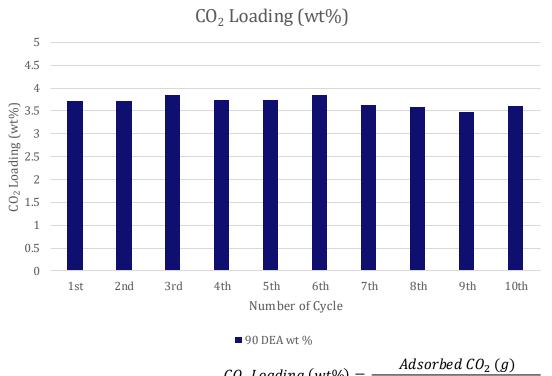
^{*} Figure. Experimental Apparatus


DEA Infused Resin Experiment

Experimental Procedure

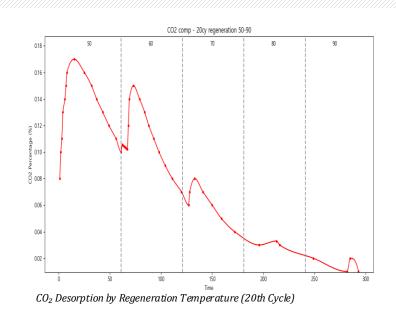
- The reactor is packed with adsorbent.
- Reaction gas is stored in a buffer tank and controlled by an MFC before entering the reactor.
- The pressure of the reaction gas is regulated by a BPR located at the outlet of the reactor.
- After passing through the adsorbent, the reaction gas exits the reactor and is analyzed by GC.
- During regeneration, nitrogen controlled by the MFC is purged while the reactor temperature is increased.

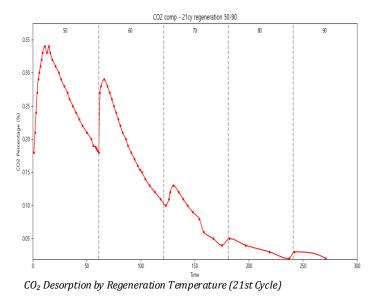
^{*} Figure. Schematic of Experimental Setting


^{*} Table. Detail of Experimental Condition

				Adsorption				Regeneratio	n	
	Composition of Flue gas	Pressure	Mass	Temperature	Flow rate	Adsorption Time	Temperature	Flow rate (N ₂)	Regeneration Time	# of Cycle
DEA- Resin	CO ₂ 5 % N ₂ Balance	3.5 bara	3 g	30 ℃	30 sccm	1 hour	90℃	100 sccm	2 hours	10

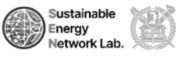
DEA Infused Resin Experiment

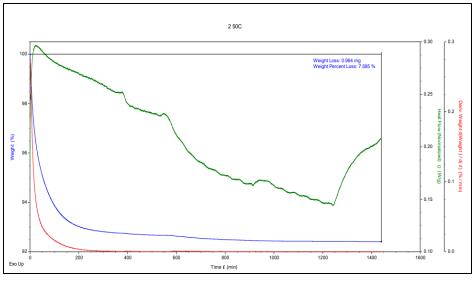

 CO_2 Loading (wt%) = $\overline{\textit{Amount of Adsorbent}}(g)$


DEA infused Resin Adsorption Performance

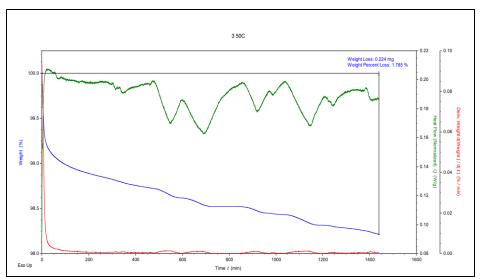

- Across all cycles, the maximum adsorption time remained similar, at approximately 30 minutes.
- CO₂ Loading (wt%) was calculated by adsorbed CO₂ which is accumulated by GC over amount of adsorbent.
- The average CO₂ Loading was 3.69 wt%.
- No significant performance degradation was observed.

DEA Infused Resin Experiment - Regeneration Temperature Assessment for DEA Resin


Experimental Procedure

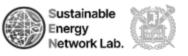

- To identify the optimal regeneration temperature for DEA.
- Purged with N_2 at 100 sccm, identical to the regeneration process.
- Measured the ${\rm CO_2}$ released from the DEA resin as the temperature was increased from 50 to 90 °C, in increments of 10 °C per hour.

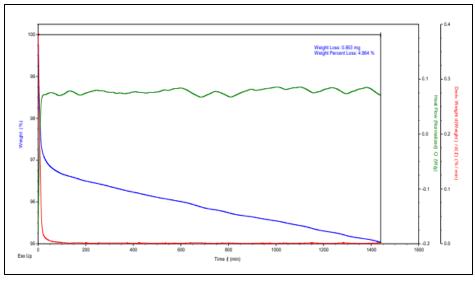
Results


- The highest CO₂ desorption was observed at 50 °C and 60 °C, with an initial desorption peak also appearing at 70 °C.
- The highest CO₂ desorption was observed at 50 °C.

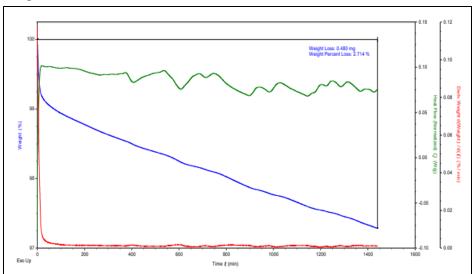
DEA Infused Resin Experiment - TGA/DTA Analysis at 50°C

^{*} CO₂ Loaded DEA Resin


	CO ₂ Loaded DEA Resin	DEA Resin
Heat Flow	Exo up	
Derivation of Weight	7.585 %	1.785 %
Weight Loss	0.964 mg	0.224 mg


Time-Dependent SDT Results at 50 °C

- The sample were kept at 50 °C for 24 hours resulted in substantially greater weight loss in CO₂ loaded DEA resin than in the unloaded sample, due to CO₂ desorption.
- The optimal regeneration time was approximately 30 minutes.


* DEA Resin

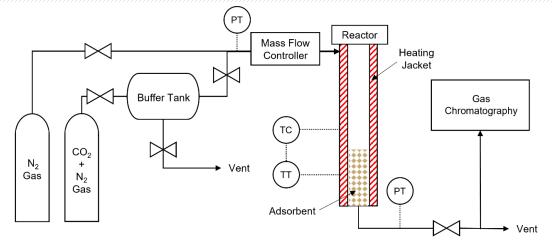
DEA Infused Resin Experiment - TGA/DTA Analysis at 60°C

* CO₂ Loaded DEA Resin

	CO ₂ Loaded DEA Resin	DEA Resin
Heat Flow	Exo up	
Derivation of Weight	4.963 %	2.714 %
Weight Loss	0.853 mg	0.480 mg

Time-Dependent SDT Results at 60 °C

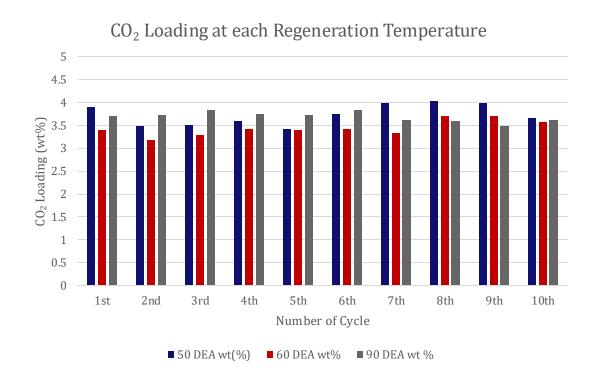
- Both CO₂ loaded and unloaded samples showed rapid initial weight loss, followed by a gradual decrease.
- As observed at 50 °C, CO₂ loaded DEA resin exhibited greater weight loss than the unloaded resin.
- At 60 °C, DEA resin showed even higher weight loss compared to 50 °C.


* DEA Resin

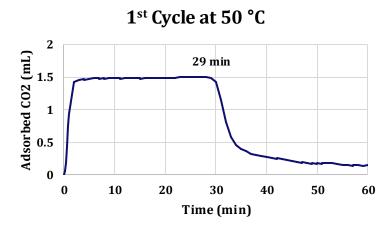
DEA Infused Resin Experiment - Regeneration Temperature as an Operational Variable


Experimental Procedure

- Adsorption method applied consistently across experiments.
- Regeneration experiments conducted at 50°C, 60°C, and 90°C.

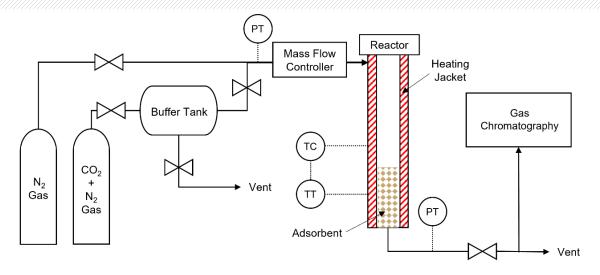


* Figure. Schematic of Experimental Setting


					Adsorption			Regeneratio	n	
	Composition of Flue gas	Pressure	Mass	Temperature	Flow rate	Adsorption Time	Temperature	Flow rate (N ₂)	Regeneration Time	# of Cycle
							90℃			
DEA- Resin	CO ₂ 5 % N ₂ Balance	3.5 bara	3 g	30 ℃	30 sccm	1 hour	60 ℃	100 sccm	2 hours	10
							50 °C			

Regeneration Temperature	Average CO ₂ Loading (wt %)
50 °C	3.73
60 °C	3.45
90 °C	3.69

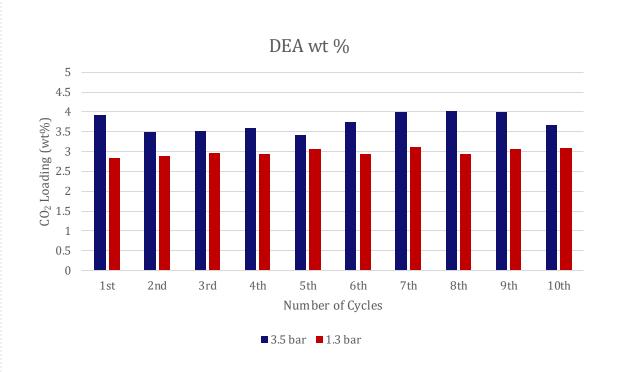
Adsorption Performance by Regeneration Temperature


- Among the three regeneration temperatures, 50 °C yielded the highest average adsorption capacity.
- Across all cycles, the maximum adsorption time remained similar, at approximately 30 minutes.
- No significant performance degradation was observed at any regeneration temperature.

DEA Infused Resin Experiment – Adsorption Pressure as an Operational Variable

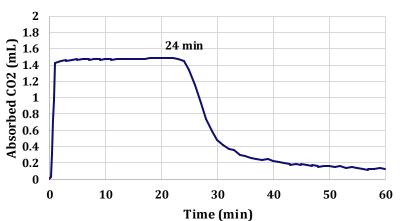
Adsorption Pressure as an Operational Variable

- Adsorption method applied consistently across experiments except the pressure.
- The experiments were conducted under 3.5 bar and 1.3 bar.



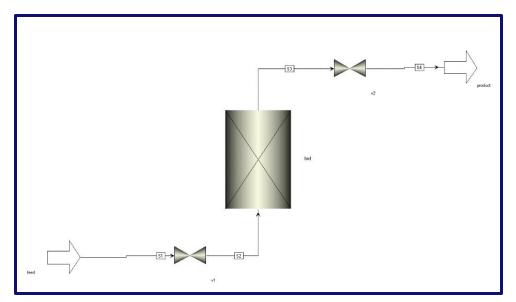
^{*} Figure. Schematic of Experimental Setting


				Adsorption			R			
	Composition of Flue gas	Pressure	Mass	Temperature	Flow rate	Adsorption Time	Temperature	Flow rate (N ₂)	Regeneration Time	# of Cycle
DEA-	CO ₂ 5 %	3.5 bar	2 a	20 ℃	20 ssam	1 hour	50 ℃	100	2 hours	10
Resin	N ₂ Balance	1.3 bar	3 g	30 C	30 °C 30 sccm		30 C	sccm	2 nours	10


DEA Infused Resin Experiment - Adsorption Performance by Adsorption Pressure

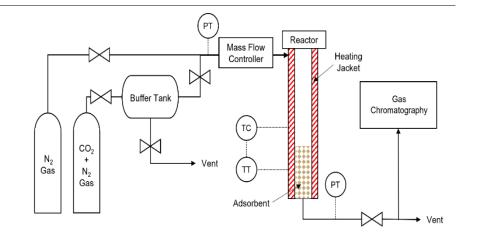
Adsorption Pressure	Average CO ₂ Loading (wt %)
1.3 bar	2.98
3.5 bar	3.45

Adsorption Performance under different pressure


- Compared to 3.5 bar, the adsorption performance at 1.3 bar was about 0.5 points lower.
- The maximum adsorption time also decreased from 30 minutes to 24 minutes.
- Similar to the case at 3.5 bar, no noticeable degradation was observed.

Process Simulation

Model description



- Process simulation was performed using Aspen Adsorption, an adsorption process modeling tool.
- The simulation was based on the lab scale model.
- Only the adsorption phase of the adsorption–regeneration cycle was simulated.
- Model fitting was carried out using experimental conditions and parameters obtained from the experiments.

* Figure. Aspen Adsorption

	_			A	dsorption	
	Composition of Flue gas	Pressure	Mass	Temperature	Flow rate	Adsorption Time
DEA- Resin	CO ₂ 5 % N ₂ Balance	3.5 bara	3 g	30 ℃	30 sccm	1 hour

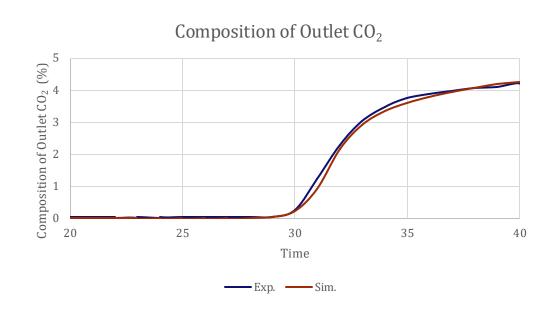
Process Simulation

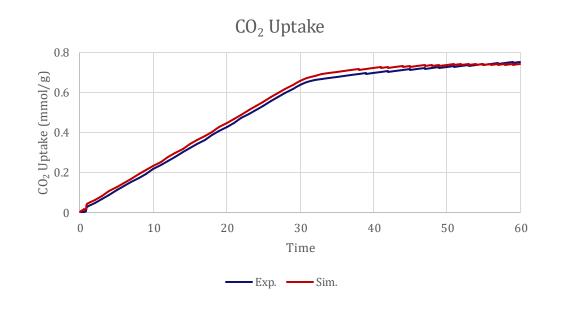
* Table. Key Models in Simulation

Model description

Model	Method	Equation
Adsorption isotherm model	Langmuir 1	$w_i = \frac{IP_1P_i}{1 + IP_2P_i}$
Mass transfer model	Lumped resistance with a linear driving force	$\frac{\partial w_i}{\partial t} = MTC_{si}(w_i^* - w_i)$
Energy Balance	Non-isothermal with Gas & Solid Conduction	$ \left(\varepsilon_{i} \rho_{g} C_{p,g} + \rho_{s} C_{p,s} \right) \frac{\partial T}{\partial t} $ $= \varepsilon_{i} \frac{\partial (\nu_{g} \rho_{g} C_{p,g} T)}{\partial z} - \rho_{s} \Delta H_{ads} \frac{dq}{dt} $
Pressure drop, Gas velocity within the bed	Ergun equation	$ \frac{\partial p}{\partial z} $ $ = -\left(\frac{1.5 \times 10^{-3} (1 - \varepsilon_i)^2}{\left(2r_p \psi\right)^2 \varepsilon_i^3} \mu v_g + 1.75 \times 10^{-5} \rho_g \frac{(1 - \varepsilon_i)}{2r_p \psi \varepsilon_i^3} v_g^2\right) $

 w_i : Adsorption capacity of adsorbent (mmol CO_2 / g of adsorbent)


 ε_i : Interparticle voidage $C_{p,(g,s)}$: Heat Capacity of gas and solid


 r_p : Particle radius ψ : Sphericity v_g : Gas Velocity

Process Simulation

Simulation Results

* Figure. CO₂ Hold up in bed of Exp. and Sim.

- The breakthrough point and overall adsorption behavior were well simulated.
- Differences in adsorption rate were attributed to bed hold-up.

	Composition of Outlet CO ₂	CO ₂ Uptake
RMSE	0.1	0.017

^{*} Figure. Outlet CO_2 Concentration of Exp. and Sim.

Conclusion & Future Work

- 1. The adsorption performance of DEA infused resin was evaluated
 - 1. When regenerated at 90, the resin showed 3.69 wt% adsorption performance, and no degradation was observed even after 10 cycles.
- 2. Regeneration temperature experiments were conducted from 50 °C to 90 °C, with 1-hour increments...
 - 1. The highest desorption was observed at 50 °C and 60 °C.
 - 2. At 50 °C, the resin exhibited the highest adsorption performance, with no degradation after 10 cycles.
- 3. Pressure experiments indicated that adsorption performance decreased by about 0.5 wt% compared to near-atmospheric pressure. It did not affect stability.
- 4. Aspen Adsorption simulations were carried out, successfully reproducing the adsorption process.

Future Work

- Further characterization of DEA-infused resins
 - Economic evaluation of the process
 - Desorption simulations
- Bed sizing and process design through simulation

Reference

- Hwang. S. J. et al (2017). Solubility of Carbon Dioxide in Aqueous Solutions of Three Secondary Amines:
 2-(Butylamino)ethanol, 2-(Isopropylamino)ethanol, and 2-(ethylamino)ethanol Secondary Alkanolamine
 Solutions. *Journal of Chemical Engineering and engineering data*, 62, 2428-2433. DOI: 10.1021/acs.jced.7b00364
- Meng F. et al (2022). Research progress of aqueous amine solution for CO₂ Capture: A review. Renewable and Sustainable Energy Reviews. 168, 112902. https://doi.org/10.1016/j.rser.2022.112902
- Huertas J. et al (2015). $\rm CO_2$ Absorbing Capacity of MEA. Journal of Chemistry. Volume 2015, 7. http://dx.doi.org/10.1155/2015/965015
- Xu X. et al (2018). CO₂ Capture by amine infused hydrogels (AIHs). Journal of Materials Chemistry A. Issue 11.
- Dutcher B. et al (2013). Amine-based CO₂ Capture Technology Development from the beginning of 2013 A Review. ACS Applied Materials & Interfaces. Vol 7/Issue 4. https://pubs.acs.org/doi/abs/10.1021/am507465f
- Jung J. et al (2024). Application of amine infused hydrogels (AIHs) for selective capture of CO_2 from H_2/CO_2 and N_2/CO_2 gas mixture. Chemical Engineering Science. 288, 119799.
- Jung J. et al (2022). Onboard CO₂ Capture Process Design using Rigorous Rate-based Model. Journal of Ocean Engineering and Technology 36 (3), 168-180.
- Wood C. et al (2018). Carbon Capture with polyethylenimine hydrogel beads (PEI HBs). Journal of Materials Chemistry A, 2018, 6, 21468-21474.

