
Expertise in trace gas analysis

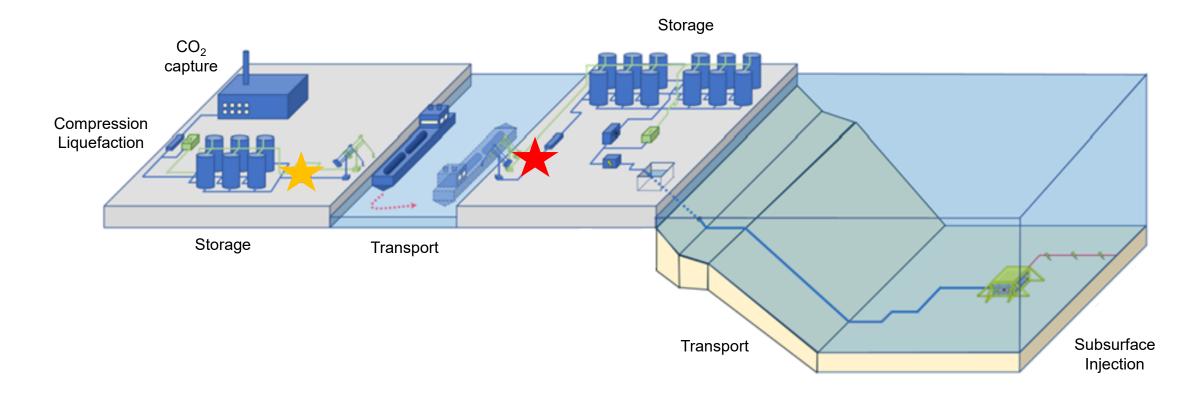
Potential impact of impurities on CO₂ transport

- Corrosion
- Alteration of the physicochemical properties of CO₂
- Liquid (water, acids) or solid phase dropouts

Morland et al., 2021

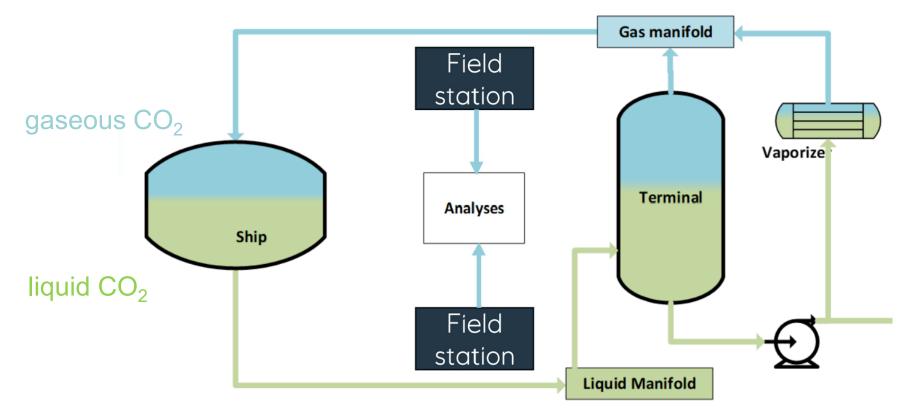
Northern Lights Liquid CO₂ quality specifications

Component	Unit	Limit for CO₂ Cargo within Reference Conditions
Carbon dioxide (CO ₂)	mol-%	Balance (Minimum 99.81%)
Water (H ₂ O)	ppm-mol	≤ 30
Oxygen (O ₂)	ppm-mol	≤ 10
Sulphur oxides (SO _x)	ppm-mol	≤ 10
Nitrogen oxides (NO _x)	ppm-mol	≤ 1.5
Hydrogen Sulfide (H₂S)	ppm-mol	≤1
Amine	ppm-mol	≤10
Ammonia (NH₃)	ppm-mol	≤ 10
Formaldehyde (CH ₂ O)	ppm-mol	≤ 20
Acetaldehyde (CH₃CHO)	ppm-mol	≤ 20
Mercury (Hg)	ppm-mol	≤ 0.0003
Carbon Monoxide (CO)	ppm-mol	≤ 100
Hydrogen (H ₂)	ppm-mol	≤ 50
Methane (CH ₄)	ppm-mol	≤ 100
Nitrogen (N ₂)	ppm-mol	≤ 50
Argon (Ar)	ppm-mol	≤ 100
Methanol (CH₃OH)	ppm-mol	≤ 30
Ethanol (C₂H₅OH)	ppm-mol	≤1
Total Volatile Organic Compounds ¹	ppm-mol	≤ 10
Mono-Ethylene Glycol (MEG)	ppm-mol	≤ 0.2
Tri-Ethylene Glycol (TEG)	ppm-mol	≤ 0.2
BTEX ²	ppm-mol	≤ 0.5
Ethylene (C ₂ H ₄)	ppm-mol	≤ 50
Hydrogen Cyanide (HCN)	ppm-mol	≤ 100
Aliphatic Hydrocarbons (C ₃ +) ³	ppm-mol	≤ 1,100
Ethane (C ₂ H ₆)	ppm-mol	≤ 75
Solids, particles and/or dust	μm	≤ 1.0


 Measuring a broad spectrum of inorganic and organic impurities – both polar and non-polar – down to sub-ppm levels in a liquid CO₂ matrix poses a significant analytical challenge.

¹ Total Volatile Organic Compounds (VOC) are VOC in addition to the ones listed separately in this specification, i.e., Ethanol, Methanol, Formaldehyde, Acetaldehyde, and BTEX, and includes the following components: 1-propanol < 1 ppm-mol, 2-butanol <1 ppm-mol, 1,2,4-trimethylbenzene <5 ppm-mol.

² BTEX refers to the following chemical compounds: Benzene, Toluene, Ethylbenzene and Xylene.


³ Total amount of hydrocarbons not to exceed 1,100 ppm-mol. Individual limits for groups of HCs: C3 <1,100 ppm-mol, C4-C5 < 815 ppm-mol, C6-C7 < 75 ppm-mol, C8-C9 < 8 ppm-mol.

CO₂ quality checkpoints

At the receiving terminal, it is essential to monitor CO₂ impurities online and in real time.

Sampling challenges

Kvilhaug Simonsen and Drageset, 2025

Impurities must be analyzed both in the LCO₂ stream and in the CO₂ gas return.

Existing commercial solutions for CO₂ analysis (organic impurities)

GC

- Offline
- No real-time monitoring (12 min)
- Measurement range: ppb-ppm

FTIR

- Online
- No real-time monitoring (10 min)
- Slow time response even for non-sticky* compounds
- Measurement range: ppb-ppm

MS

- Online
- Real-time monitoring
- Slow time response for sticky* compounds
- Measurement range: ppb-ppm
- * Sticky compounds adsorb to sampling and analyzer surfaces, causing delayed or distorted signals.
- These instruments were originally designed for beverage-grade CO₂, which has simpler impurity specifications (i.e., does not include analytically challenging compounds such as amines and glycols).
- No method has yet been validated for LCO₂ derived from amine-based CO₂ capture.

New development

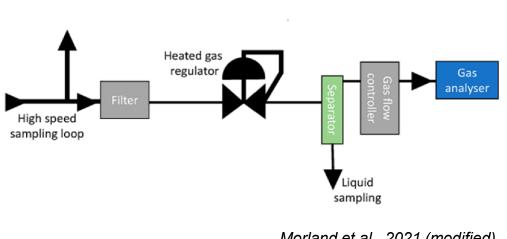
Prototype instrument ("PTR-TOF CO₂Guard") for online and real-time analysis of impurities in liquid and gaseous CO₂

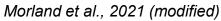
- 1. Distinctive feature: high-resolution analysis of complex mixtures using time-of-flight (ToF) mass spectrometry
- 2. Builds on proven PTR-TOF technology for sensitive detection of amines, alcohols, and aromatics
- Optimized LCO₂ vaporization system (in development) ensures fast response to challenging "sticky" compounds (e.g., glycols, alkanolamines)
- 4. Modified ionization system extends detection to key inorganic pollutants (NO₂, SO₂)

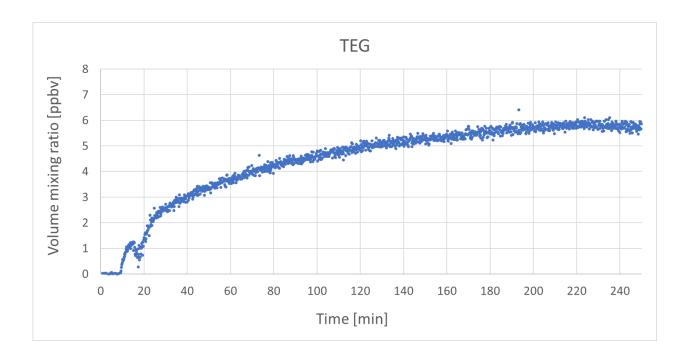
Time-of-Flight MS for complex mixture analysis

 High resolution mass analysis significantly enhances detection capabilities, enabling clear separation and identification of individual constituents in complex mixtures

Proven PTR-TOF technology

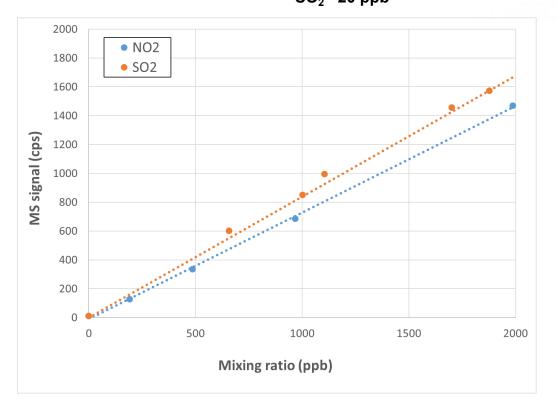

- 1. Water
- 2. Oxygen
- 3. SO₂
- 4. NO₂
- 5. H₂S
- 6. Amines
- 7. Ammonia
- 8. Formaldehyde
- 9. Acetaldehyde
- 10. Methanol
- 11. Ethanol
- 12. Monoethylene Glyol
- 13. Triethylene Glycol
- 14. BTEX
- 15. HCN

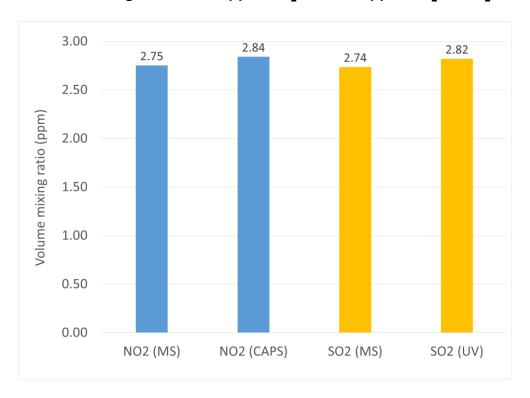

 Importantly, the instrument can also detect untargeted impurities - those not included on the specification list (see next slide).


Impurities detected in the CO₂ product (MEA-based CO₂ capture)

Name	Formula	Stripper
		(ppbV)
2-aminoethanol	H ₂ NCH ₂ CH ₂ OH	8
Ammonia	NH_3	358
Formaldehyde	HCHO	190
Acetaldehyde#	CH₃CHO	7300
Acetone	(CH ₃) ₂ CO	300
Acetic acid	CH₃COOH	20
Formamide*	CHONH ₂	210
2-amino acetaldehyde*	NH ₂ CH ₂ CHO	40
Methane, nitro-*	CH ₃ NO ₂	1800
Ethane, nitro-*	CH ₃ CH ₂ NO ₂	1
Pyrrole*	C ₄ H ₄ NH	5
Benzene*	C_6H_6	2
Pyrazine*	$C_4H_4N_2$	500
Pyrazine methyl-*	$C_4H_3N_2CH_3$	80
Pyrazine dimethyl-*	$C_4H_2N_2(CH_3)_2$	20
Pyrazine trimethyl-*	$C_4HN_2(CH_3)_3$	5
Oxadiazole*	$C_2H_2N_2O$	5

Sticky analytes – development of an optimized LCO₂ vaporization system




- Existing vaporization systems on the market do not deliver fast response to challenging "sticky" compounds (e.g., glycols, alkanolamines).
- An optimized LCO₂ vaporization system is under development to overcome this challenge.

Earlier work (2022) – analysis of inorganic compounds (NO₂, SO₂)

Limit of Detection: NO₂ 3 ppb SO₂ 20 ppb

Test gas with 2.73 ppm NO₂ and 2.75 ppm SO₂ in CO₂

Thank you for you attention!

info@adms.no