IEA 4th Post Combustion Capture Conference:

CO₂ Capture by Cold Membrane Operation (DE-FE0013163 & FE0026422)

September 5, 2017 A. Augustine, T. Chaubey, S. Kulkarni, D. Hasse, S. Fu, J.M. Gauthier | R&D

Air Liquide and MEDAL

World leader in industrial and medical gases 68,000 employees \$19 billion sales (2016)

Cold Membrane Technology Roadmap

Technology Summary

Air Liquide hybrid cold membrane / liquefaction process for 550 MWe scale

Cold membrane testing at 0.1 MWe with synthetic flue gas (TRL4) in 2012

CO₂ Capture Cost estimated at 46-52\$/tonne (DOE Target - \$40/tonne)

Tested PI-1 material at 0.3 MWe scale (TRL5) at the NCCC

Plan to test novel PI-2 material at 0.3 MWe scale at the NCCC, late 2017

Membranes at a Glance

A thin barrier that allows selective passage of molecules at different rates

A simple technology which requires

- ... no moving parts
- ... no external energy

Background: Novel PI-2 Membrane Material

Agenda

Project & Technology Overview

NCCC Testing

- Installation/Commissioning
- PI-1 commercial membranes
- PI-2 novel material
- 550 MWe TEA
- Next Steps
 - PI-2 manufacturing
 Bench scale performance
 NCCC test plan

(early 3-D mock-up of 0.3 MWe skid)

Field Test Unit Commissioning at NCCC

Key takeaway: thorough acceptance test and commissioning!

DRTC TEAM AT NCCC: Install: Aug-2015, Testing: Oct-2015

ENERGY

AIR LIQUIDE

Interna

NETL

INT

5:00000

Sterling

Testing at the NCCC

PO-4 (Oct – Dec 2015) Objectives:

Validate enhanced performance with real flue gas

Long term test with PI-1 and small (1") PI-2

PO-5 (May – Nov 2016):

Parametric testing 6" and 12" PI-1 bundle, 1" PI-2

Flue gas contaminants analytical campaign

PO-7 (Nov'17 – Dec'17):

Parametric testing 6" PI-2 bundles

Long term test (500 hours, 90% capture)

PO-8 (mid-2018?):

Some interesting stuff!

Complete

Complete

Planned Planned

Planned

Performance Validation (12" Commercial Bundle)

- Bundle performance in field was projected from 0.1 MW bench scale skid
- Actual performance was even better than predicted

Enhanced membrane performance validated in field!

Air Liquide

12" PI-1 Commercial Bundle Steady State Test

12" PI-1 Commercial Bundle Steady State Test

PI-2 Steady State Test (1" Bundle: 10x More Fibers)

12" PI-1 vs PI-2 Bundle Performance

Agenda

Project & Technology Overview

NCCC Testing

- Installation/Commissioning
- PI-1 commercial membranes
- PI-2 novel material

550 MWe TEA

Next Steps

PI-2 manufacturing
 Bench scale performance
 NCCC test plan

(early 3-D mock-up of 0.3 MWe skid)

Techno-Economic Analysis (TEA)

Objective: CO₂ capture from a commercial power plant, 550MWe (net), 12,000 tpd, at \$40/tonne by 2025

Process optimization (PFD → HYSYS model, massenergy balance)

Equipment costing (vendor quotes, scaling method)

Major Equipment	Scaling Factor	Cost Reference	
Pre-FGD heat recovery	UA value	AL database	
2-stage contact tower	Molar flow	AL database	
Particulate filter	Molar flow	Vendor quote	
Feed compressor	Molar flow	Vendor quote	
Equipment 5, 6, 7, etc.			

DOE cost methodology

Parsons review and feedback

Carbon Capture Cost Estimate

Techno Economic Analysis (TEA) Study

	Case 12 (Amine)	Cold Membrane (PI-1)	PI-2
Power Plant Cost (MM\$)	1,366	1,305	1,326
CO ₂ Capture System (MM\$)	593	357	254
Total Plant Cost (MM\$)	1,959	1,662	1,580

Agenda

Project & Technology Overview

NCCC Testing

- Installation/Commissioning
- PI-1 commercial membranes
- PI-2 novel material

550 MWe TEA

Next Steps

PI-2 manufacturing

Bench scale performance

NCCC test plan

(early 3-D mock-up of 0.3 MWe skid)

Membrane Manufacturing Scale-up, DE-FE0026422

		OD (in)	Length (ft)	Fiber Count	Spinning Device	Fabrication Technique			
Mini permeator	÷	0.25 - 0.5"	4.07	<1000	1-hole lab unit	Hand			
Permeator	÷	1"	1.6'	1 – 5x		Cleain			
Skein module		2.5"		15 – 20x	12-hole	Skein			
R&D prototype bundle	-	2.5 - 4"		15 – 20x	"DSU"				
6" bundle		6"	2.8'	50 – 90x		Forming			
In	pro	gress, ready	24/36-hole production	r onning					
12" bundle (commercial)		12"		>200x	unit				
Spinning Equipment (DSU) Fiber Processing / Handling Forming Equipment									
Spinning Post-spin handling Washing Drying Bobbin winding									

4" Prototype Bundle Performance

- Significant improvement by using 'forming' method in scale-up
- Lessons learned resulting in further performance gains
- Epoxy application for tubesheet
- 2) Post-treatment solution concentration
- Outer wrap layer positioning
- 4) Optimize fiber OD

Success criteria: 90 Nm³/h feed flow, 90% CO₂ recovery, 58% permeate purity

Fiber Manufacturing Cost Analysis

What are relative merits of costsaving approaches?

- Best value is
 composite formulation
- With low polymer price monolith fiber yields CO₂ capture cost savings
- Pursuing both approaches

Next Steps

Manufacturing several 6" bundles
(6 – 8), test on 0.1 MWe skid in
Newark, DE

- Field-test at NCCC, 0.3 MWe scale
 - Parametric testing
 - Long-term stability
 - Dynamic testing: start / stop / cool / warm / moisture breakthrough – evaluate bundle integrity
 - NO/NO₂ injection to simulate SCR failure/removal

0.3 MWe Field-Test Unit at NCCC, Pilot Bay 3 (DE-FE0013163)

Acknowledgements & Disclaimer

US DOE NETL – José Figueroa, Lynn Brickett, Andrew O'Palko

- National Carbon Capture Center
- Parsons Government Services

The material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Awards: DE-FE0004278, FE0013163, FE0026422. The NCCC is support by Award DE-FE0022596.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Research & Development Opening new ways

THANK YOU FOR YOUR ATTENTION

