Svante

Techno-economic evaluation of electrified carbon capture in cement production

PCCC-8 Conference

Mania Neisiani, Bhurisa Thitakamol

Agenda

Introduction to Svante Technology

Cement Integration Option

Case Study

Key Takeaways

Svante is a Leading CO₂ Capture Technology Developer

Leader

in solid sorbent CO₂ capture technology

Applicable

to 84% of CO₂ capture and removal market

16+

years of R&D

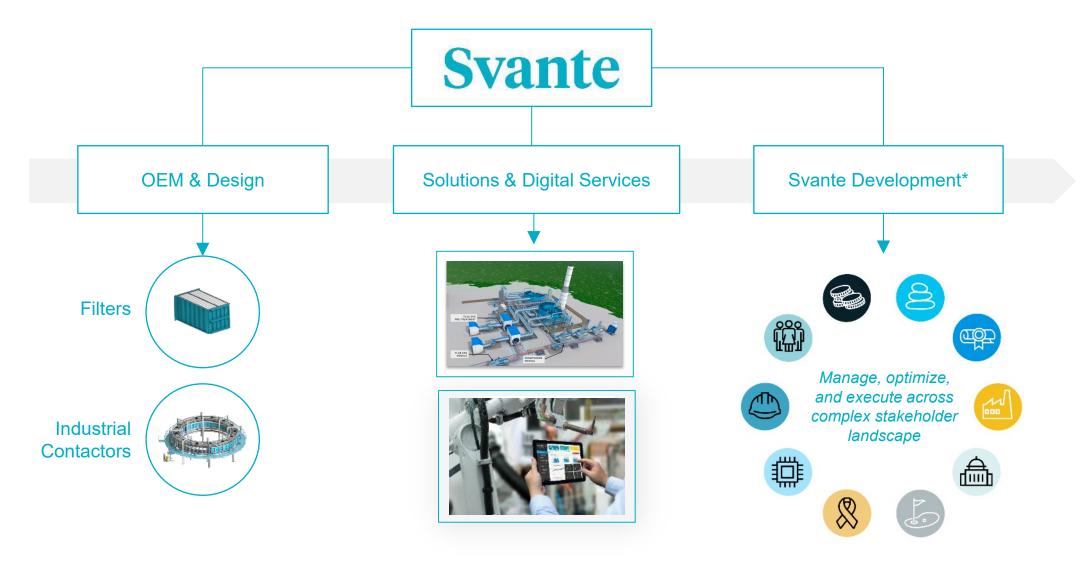
Located

in Vancouver, Canada

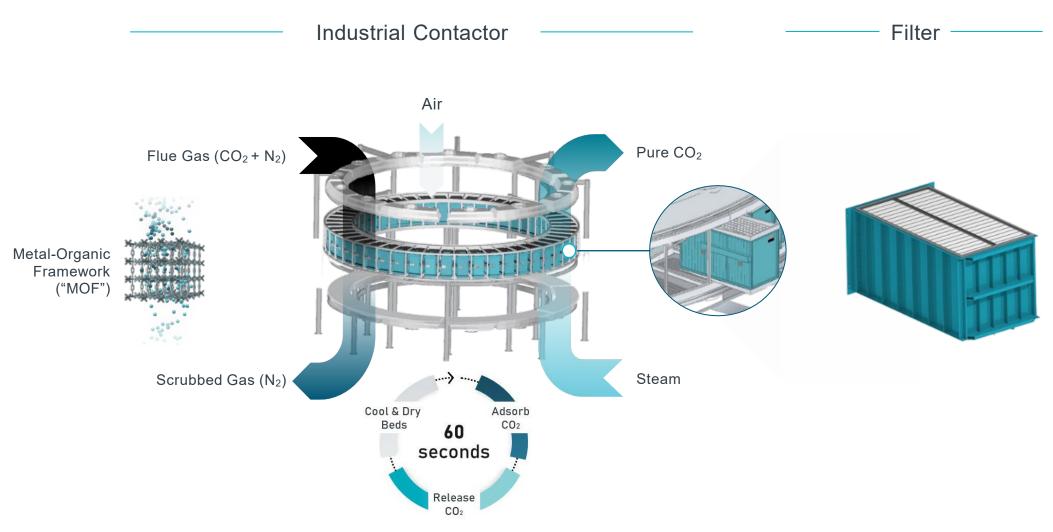
\$600M+

raised to date (USD)

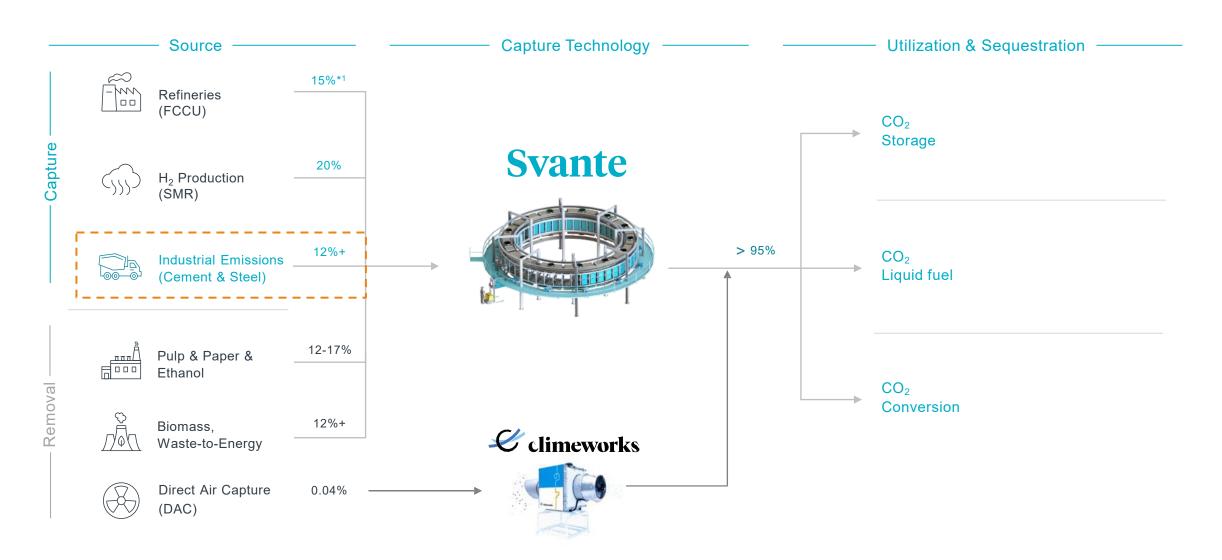
~140


patents/applications

Svante is a journey that has been more than 16+ years in the making.



The Svante Group Business Units



Svante's Industrial CO₂ Capture System

Svante's Core Business is Industrial Point Source Carbon Capture

Benefits of Solid Sorbents

Metal-Organic Frameworks ("MOFs") are a step change for the carbon capture industry

- ✓ Energy efficient
- ✓ Resistant to SOx, NOx, O₂ & H₂O in flue gas
- ✓ Captures up to 95% of total CO₂ emitted
- √ High CO₂ capacity means smaller inventory of adsorbent required
- √ Filters are designed to be recyclable

Svante's Pathway to Commercial Readiness

1 Production:Solid Sorbent-Lined Filters

Adsorbent manufacturing scale up with BASF

SAB (Filter) Manufacturing facility in Svante HQ @ Burnaby

2 Design:

Industrial Contactor (Carbon Capture Machine)

In-house operation of fullsized industrial contactor

Continuous improvement and optimization

3 Testing & Optimizations:

Tracking, Measuring & Optimizing Performance

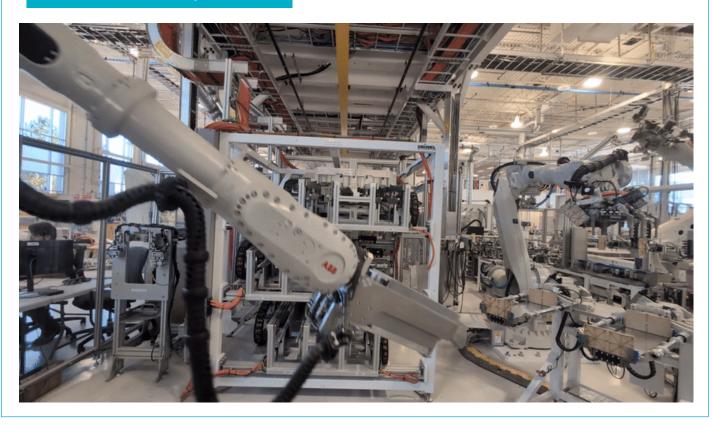
Rapid temperature swing adsorption (RTSA) cycle optimization & enhancements

Validation of KPIs via inhouse and external units 4 Plant:

Carbon Capture Plant Design

Optimized for waste heat recovery and integration with industrial host site (brownfield and greenfield).

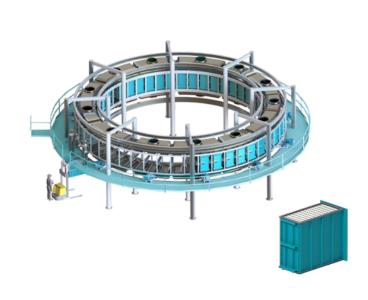
Filter Manufacturing Plant Commissioned Q2 2025

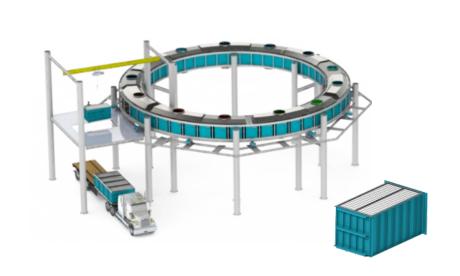

Sorbent Slurry Room

Filter Manufacturing Floor

Filter Module Assembly Line

Annual filter manufacturing capacity = 10 commercial carbon capture plants capturing 1 million tonnes of CO2 per year. That's enough filters to capture 10 million tonnes annually.

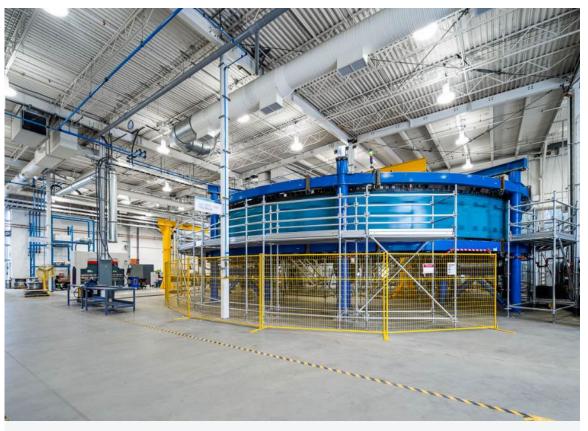

Standardized Contactor Product Approach


Ursa 1000

~500 tpd / ~182,500 tpa

Ursa 2000

~2,000 tpd / ~730,000 tpa



Svante produces commercial units at two predetermined scales.

RAM Prototype Buck Design Validation

- Svante has commissioned a full-size prototype
 Ursa-1000 for in-house operation since Nov 2023
- Design validation and optimization ongoing according to developed processes and test plans
- Testing at higher design targets than normal operation conditions to confirm margins

Ursa 1000 – 500 TPD

Key Takeaway

Our CO₂ contactor operates as a simple, modular and mechanical solution, not as a complex chemical operation attached to your cement facility.

Testing & Optimizations: Development & Scale-Up Roadmap for MOF-based Technology Deployment

* The Technology Readiness Level (TRL) is defined according to the DOE TRL levels. This is a metric to assess the maturity of evolving technologies. The goal of TRL is to illustrate the technology development status.

Year By	2016	2020	2020-Present	2019-2024		2023-2026			2028
TRL Level	TRL 4 Validation in Lab	TRL 5 Lab scale validated in relevant env.	TRL 6 Pilot scale in relevant env.	TRL 6 Demo scale in relevant env.	TRL 7 Prototype demo in plant env.				TRL 8 System validated via plant testing and demo
Phase	VTS Stationar y Test Station	Process Demonstration Unit 100 Series	Pilot Plant 200 Series, Cement Kiln Flue Gas	FOAK Plant 400 Series, OTSG flue gas in plant env.	SOAK Plant 400 Series, OTSG flue gas in plant env.	Full Scale Machine Design Validation	MDU1 at TCM FCCU flue gas/ Cem ent flue gas in plant env.	MDU2 at Recovery Boiler flue gas in plant env.	Large-Scale Ursa 1000 and 2000
Plant Scale									
Location	Svante BC, Canada	Svante BC, Canada	Lafarge BC, Canada	Cenovus SK, Canada	Chevron CA, USA	Svante BC, Canada	TCM Norway	Pulp and Paper Plant Q4 2025	TBD
CO ₂ Capacity	<0.1 TPD	~ 0.1 TPD	1 TPD	25 TPD	25 TPD	~500 TPD	~ 0.1 TPD	~ 0.1 TPD	~ 500 - 2000 TPD

Svante's Extensive Experience in Cement

Over 32,0000 hours of pilot operation in various plants

Chevron SOAK 400 Series Plant


Source: Industrial Boilers **Status:** Operational **Owner:** Chevron

9,125 tpa

Cenovus FOAK 400 Series Plant

Source: NG Boiler Status: Completed Owner: Cenovus

10,000 tpa

Svante's Cement Pilot Performance

Lafarge 200 Series Demo Unit

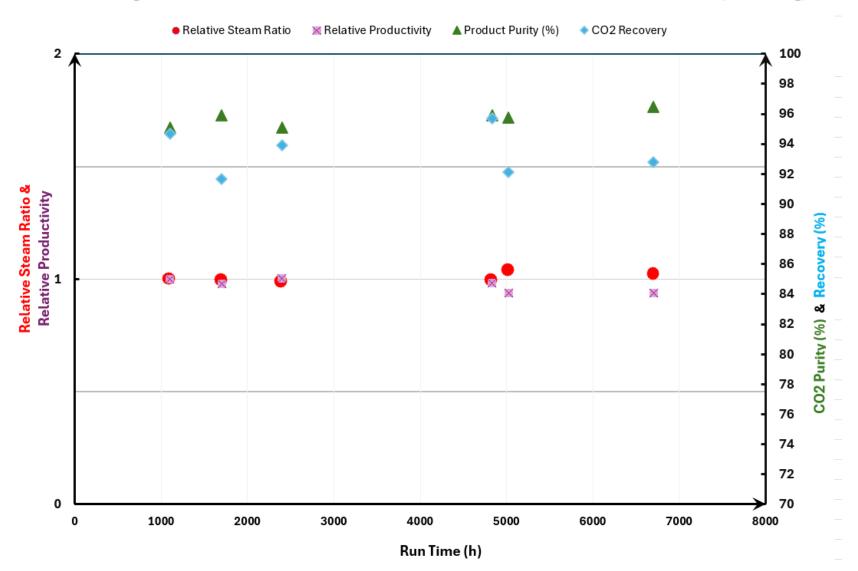
Source: Cement Kiln | Status: Operational

365 tpa

Started up in 2019
Over 8,000 hrs of operation

Value Supported by Data

- Validated technology KPIs in Cement Operations
- Stability of Sorbent proven in actual Cement operations
- Proven process optimizations drive further value and industry leading performance
- Operational experience leveraged for commercial project design



Svante Mobile unit is currently in operation at a cement plant in the EU.

Lafarge stability data

1 TPD CO₂Ment / Lafarge Pilot Plant: Stability over time checked against baseline conditions (14.7% CO₂)



MDU-1 Mobile Demonstration at TCM successfully completed

Key Results

- Demonstrated no secondary emissions from Svante's Technology
- Validated stability of CALF-20 filters with contaminated RFCC flue gas and simple pretreatment (contaminants containing particulate, NO_x/SO_x, and aerosols)

 The unit will be available for technology demonstrations at customer facilities in the near future

Technology Center Mongstad (TCM) in Norway is the world's largest, and reputable facility for testing and development of Carbon Capture technologies

The test campaign ran from Oct 2024 to April, 2025

Case Study: Svante's CCS Applications in Cement Plant

Svante Advantages for Cement Applications

Low-Grade Heat Utilization:

Svante can use low-grade heat due to the steam being under slight vacuum, down to 90 C

Electrification:

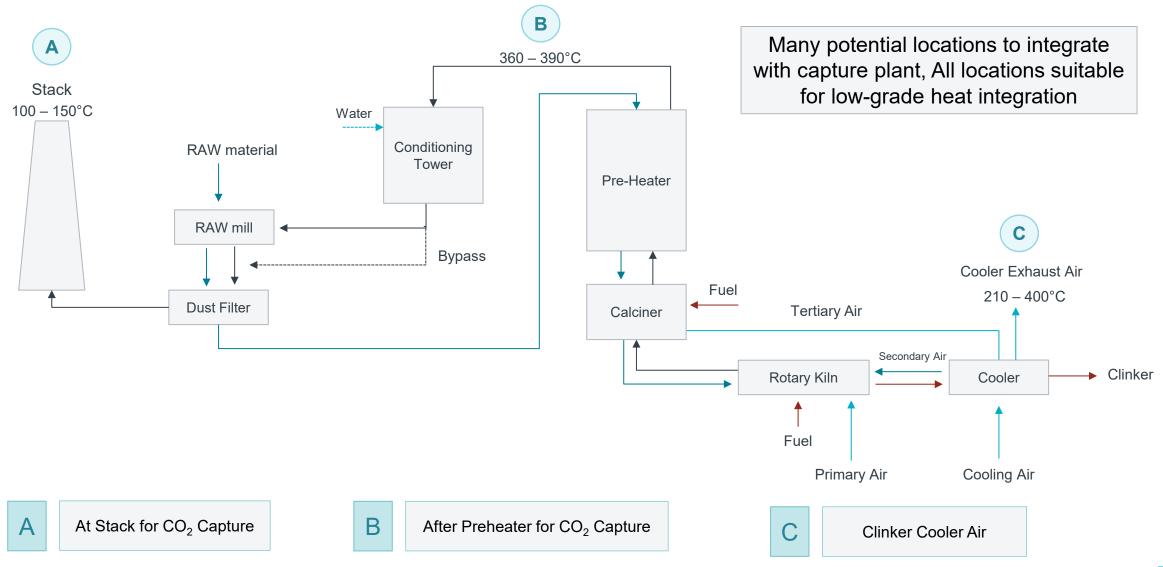
Svante's low-grade heat capability extends to being able to use MVR to fully electrify certain the carbon capture plant for certain processes

Minimal Impact on the Environment:

Svante materials are free from aerosols, volatile emissions and toxic degradation byproducts – uniquely recyclable sorbent filter beds

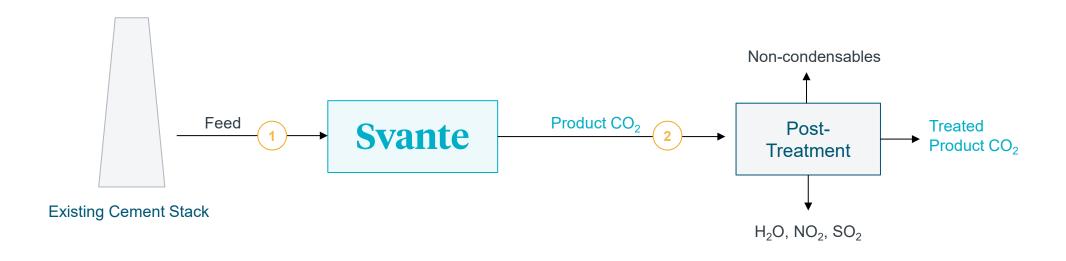
Robustness to Contaminants:

Svante's structured filter beds are more robust to particulates found in hard-to-abate industries, compared with liquid solvent technologies. Svante doesn't require a separate pretreatment for Sox Nox PM for cement plant


Operational Simplicity & Flexibility:

Svante's rapid capture process can quickly respond to intermittent operations – no requirement onsite liquid solvent storage & make-up

Emission free, chemical free, fully electrified Svante capture plant, simple and flexible with rapid response to flue gas fluctuations



Cement Integration Option

Flue Gas Pre-/Post-Treatment

1 No additional flue gas pre-treatment unit is required for Svante's carbon capture plant.

Single CO₂ post-treatment unit is used to meet the Northern Lights Specifications.

A more optimized CAPEX/OPEX solution

Case Study basis

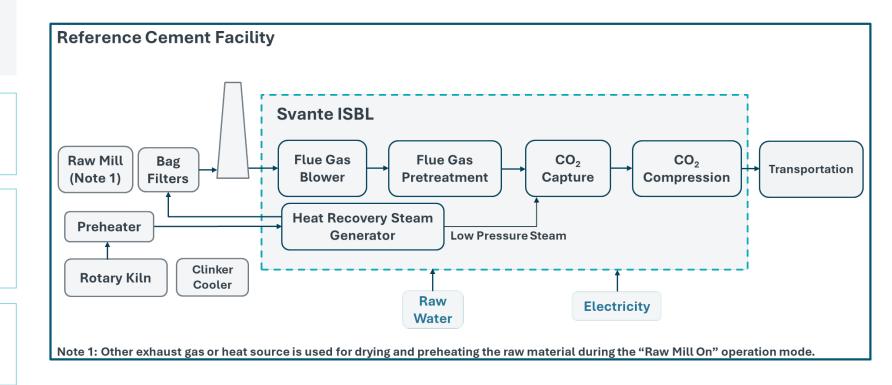
Svante Capture Plant Capacity:

~3,500 TPD

Process Design:

Full Electrification

CO₂ Concentration:


22 - 27%mol CO₂ Concentration on dry basis

CO₂ Recovery Rate:

95% Recovery

CO₂ Purity:

>97% in gaseous phase at 30 bar

Case Study Result

Electricity Power:

Capture plant: 0.8 GJ/tCO₂ Compression: 0.4 GJ/tCO₂

Heat Integration from different sources

(% of thermal energy requirement)

High-grade heat from cement plant (temp >250 C)~21% Svante's capture plant heat integration (temp >70C) ~79%

The available heat from cement plants vary from site to site

There is a tradeoff between capex/electricity consumption and level of heat integration with cement plant so further optimization of the system configuration is possible – capture plant 0.8 GJ/tCO₂ can be further decreased.

It is possible for Svante's capture plant to be fully electrified and be independent of the host site.

Any available process heat above 70°C from host site can be used to maximize ISBL heat integration.

Svante's process is suitable for cement flue gas decarbonization and validated with years of operating experience at the Lafarge Richmond cement plant

Svante's process does not require chemicals, corrosion inhibitors or activators resulting in a simple, robust and environmentally friendly process fitting well the current operational experience of cement operators

Key Takeaways

Svante's mobile test unit is available in the EU to be used at your facility to demonstrate its performance

Any carbon capture project will be a *team* effort with several partners. It's key that the *right* partners are in place to realize the carbon capture, transportation and storage components. Svante can support your project with the right partners in place.

Svante can support you and your team with EU Innovation fund applications.

Svante

Let's tackle your emission reduction targets together.

Mania Neisiani

Vice President, Technology Deployment, Svante Solutions and Digital Services mneisiani@svanteinc.com

www.svanteinc.com

