

PILOT PLANT TESTING OF PIPERAZINE WITH THE ADVANCED FLASH STRIPPER AT 3.5 TO 20% CO2

Dr. Eric Chen University of Texas at Austin Department of Chemical Engineering September 7, 2017 eric.chen@austin.utexas.edu

C2P3 & UT PZ Pilot Plant Testing

2

Current Pilot Facilities & Equipment

- SRP 0.1 MW, 16.8-inch ID
- 200-450 lb CO_2 /hr removal
- Synthetic Flue Gas: Air/CO₂
 - Enthalpy, 1-2 % H₂O, 30-40 °C
 - 3-20% inlet CO₂
 - Air max. oxidative degradation
- 30 feet (6.1 m) absorber packing
- Absorber intercooling
- 0.1-0.2 MW 10" AFS skid
 w/cold and warm rich bypass

April/May 2017 Pilot Plant Campaign

- 20% CO₂ Parallel hybrid membrane-amine process (MTR-DOE Project)
- 12% CO₂ Coal benchmark
- 3.5% CO₂ Natural gas conditions
- 4 weeks, 24 hr day, weekend shutdown
- 29 runs
- 5 m PZ
- Absorber w/intercooling
 - 30 ft (3 x 10 ft beds)
 - 20 ft (2 x 10 ft bed) + 10 ft water wash
- 10" Advanced flash stripper

The university of texas at austin CO_2 Capture Pilot Plant Program

DOE-MTR Hybrid Membrane Project

- 90% Capture Rate for the Capture System
- Absorption process removes 95%+ CO₂ from a split flue gas stream

THE UNIVERSITY OF TEXAS AT AUSTIN CO₂ Capture Pilot Plant Program

MTR Low Pressure Drop Plate-and-Frame Membrane Contactor

Polaris plate-and-frame sweep modules (designed in DE-NT007553)

500 m² R&D Skid: 5 elements bundled in one vessel.

2017 AFS Campaign Configuration

Absorber Conditions

Stripper Conditions

Absorber Performance

THE UNIVERSITY OF TEXAS AT AUSTIN CO_2 Capture Pilot Plant Program

The university of texas at austin CO_2 Capture Pilot Plant Program

Cold Cross Exchanger Performance

CO₂ Capture Pilot Plant Program

Cross-Exchanger Performance

PZ Management Results

- Precipitation minimized by 5 m PZ
 - Instr air loss + chilled water to IC = precipitation
 - Melted at 80 °C with heat gun
- Foaming
 - Moderate unexpected absorber DP at high gas rate (600 cfm)
 - Reduced to normal by addition of antifoam
- Oxidation is acceptable
 - NH₃ emissions of 3 to 10 ppm, could still be reduced
- Aerosol requires high SO₃ (Beaudry/Akinpelumi)
 - PZ emissions doubled with 10 -100 ppm SO₃
- Corrosion of CS could be acceptable for stripper shell (Fischer)
 - 175 (SS), 325 (CS) mm/yr in hot lean PZ

2017 PP Conclusions

- Absorber & stripper performed well with 20% CO₂
- Absorber predicted acceptably by "Independence" Aspen process model (Zhang)
 - Absorber model most accurate for 4% and 12% CO_2
 - Liquid distribution poor at high L/G
- Energy requirement independent of inlet CO₂
 - Heat loss needs more analysis
- Exchangers provide 4-8 °F pinch with 5 to 10% cold rich bypass
- Hot flashing P&F exchanger provides reliable heat transfer

Acknowledgements

- Members of CO₂ Capture Pilot Plant Project/PSTC
- URS/DOE Award DE-FE0005654
- MTR/DOE Award DE-FE0013188
- CCP4 BP, Chevron, Petrobras
- Raschig-Jaeger Technologies
- Emerson Process Management
- Texas Carbon Management Program

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."