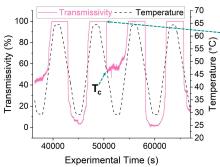
Precipitation behaviour of bicarbonate salts in carbon capture solvents

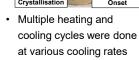
Rose E. McCarthy¹, Christopher M. Rayner¹, Fiona Meldrum¹, Nikil Kapur² cmrem@leeds.ac.uk 1. School of Chemistry, University of Leeds, 2. School of Mechanical Engineering, University of Leeds

Carbon Capture using Carboxylate-Based Solvents

- Carbon capture and storage (CCS) is essential for achieving global atmospheric temperature targets1
- Traditional amine solvents used for CCS have issues with undesirable degradation products and high energy penalties
- CO₂ loaded carboxylate
- bicarbonate solid precipitate Carboxylate salt-based solvents are a new class of solvents which have
- benefits over amine solvents, i.e. lower toxicity and degradation² They produce bicarbonate salts as the product of the reaction with carbon dioxide (CO₂) and, the bicarbonate may precipitate during the reaction
- Precipitating systems have scale-up challenges e.g. blockages, flow and, unwanted secondary crystallisation processes

Project Aim: Investigate the influence of bicarbonate concentration and carboxylate salt additives on the crystallisation of potassium bicarbonate

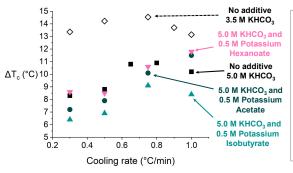

2. Experimental Methods for Crystallisation


· Cooling crystallisations of potassium bicarbonate (KHCO3) were completed in a stirred jacketed reactor with transmissivity and temperature monitoring

hicarbonate

Experimental set-up for crystallisations

The onset of crystallisation upon cooling is detected by the turbidity probe when the transmissivity of the solution drops suddenly



Crystallisation onset temperature (T_c) was Temperature and transmissivity trace for cooling crystallisation recorded for each cycle

3. Metastable Zone Widths of KHCO₃ Solutions

- T_c was measured for 2 KHCO₃ concentrations (3.5 and 5.0 M) and 3 carboxylate salts (at additive concentration of 0.5 M) in aqueous solution
- The **metastable zone width (\Delta T_c)**, the difference between equilibrium saturation and when crystals form from solution, was calculated from $\mathbf{T}_{\!c}$ and equilibrium solubility data at different cooling rates for kinetics evaluation

- Potassium hexanoate
- Narrower ΔT_c = easier crystallisation isobutyrate gives the narrowest ΔT_c
- General ΔT_c increase with cooling rate up to 0.7-0.8 °C/min where no additive and potassium isobutyrate systems deviate and start to decrease

References and Acknowledgements

- Intergovernmental Panel on Climate Change. Global Warming of 1.5°C: IPCC Special Report. Cambridge: Cambridge University Press, 2022.
- Barnes, D., Schoolderman, C., Jakab, G., Lawlor, D., Holdsworth, D., Nesti, K., Osterstrom, K., McCarthy, R., Bilal, F., Mackay, J., Rela, G., Wheatley, J. and Rayner, C. Transformational Low Energy, Amine-Free Solvents for CO₂ Capture. In: *IEAGHG 5th Post Combustion*

Capture Conference, September 2019. Kashchiev, D., Borissova, A., Hammond, R.B. and Roberts, K.J. Journal of Crystal Growth. 2010, 312(5), pp.698-704 Thanks to the Rayner group and thanks to both the University of Leeds and C-Capture Ltd for their support funding this project

4. Evaluation of Crystallisation Nucleation

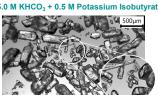
- Several models utilise ΔT_c crystallisation data collected at different cooling rates to understand crystal nucleation behaviour and kinetics
- Most models assume an increase in the metastable zone width with increasing cooling rate, therefore, only data collected between cooling rates of 0.3-0.8 °C/min were used for this analysis
- KBHR theory³ uses a In-In plot of cooling rate vs critical undercooling (u_c) to determine whether crystal nucleation is progressive (slope > 3) or instantaneous (slope < 3)
- Critical undercooling is calculated from ΔT_c and equilibrium solubility (T_e)

Instantaneous Nucleation crystallisation and then grow

Progressive Nucleation Nuclei are constantly forming throughout crystallisation

Equation for critical undercooling

$$u_c = \frac{\Delta T_c}{T_c}$$


System	KBHR Analysis Results	
	KBHR Slope	Nucleation Type
3.5 M KHCO₃	10	Progressive
5.0 M KHCO ₃	2.8	Instantaneous
5.0 M KHCO ₃ with 0.5 M Potassium Acetate	2.5	Instantaneous
5.0 M KHCO ₃ with 0.5 M Potassium Isobutyrate	2.3	Instantaneous
5.0 M KHCO ₃ with 0.5 M Potassium Hexanoate	3.2	Progressive

- Nucleation is progressive for 3.5 M KHCO₃ compared to instantaneous for 5.0 M KHCO₃, indicating nucleation is more difficult at lower concentration
- KBHR slope value for 5.0 M KHCO₃ decreases upon addition of potassium acetate and potassium isobutyrate and remains instantaneous, indicating addition of these molecules promotes crystallisation of KHCO3
- However, addition of potassium hexanoate increases the slope value and type changes to progressive indicating this additive inhibits crystallisation

5. Microscopy of KHCO₃ Crystals

Crystals from all experiments are exclusively KHCO₃ and the examples shown are from 0.5 °C/min cooling experiments

Presence of fines indicates secondary nucleation at the 0.5 °C/min cooling rate for crystallisation of KHCO₃ with potassium acetate and potassium isobutyrate additives

× 0.2 PSD for KHCO₃ product with

Crystals from 3.5 M KHCO₃ cooling crystallisation have a higher aspect ratio than 5.0 M KHCO₃

6. Conclusions and Future Work

- The addition of carboxylate salts impacts the crystallisation behaviour and the final crystal product of KHCO3
- Different carboxylate salts influence crystallisation parameters to different extents. Potassium acetate and isobutyrate may promote crystallisation and hexanoate may inhibit it

Future work: study wider concentration ranges and a variety of carboxylate additives and, measure growth rates of KHCO₃ under different conditions