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Presentation is based on Fluor’s Econamine FG Plus℠ (EFG+) technology

INTRODUCTION
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EFG+ is Fluor’s commercially proven, proprietary post-combustion capture technology

30 plants built (to date)

Designed for capturing CO2 from low-pressure gas streams containing oxygen

Experience with a wide range of flue gases

Compilation of five pre-FEED studies on cooling optimization in 2024 to 2025
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Flue gas source is hot 

– Typically 160 to 180°C downstream of economizer

– Further cooling challenged by available heat sinks and condensation

Majority of capture technologies require modest temperatures 

– Typically 40 to 60°C 

– Aqueous solvents (traditional amines)

– Solid adsorbents

– Membranes

– Cryogenics (even lower)

Cooling gap of 100 to 140°C 
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1) Temperatures for carbon capture technology deployment

THE LOW-GRADE HEAT EXCHANGE PROBLEM



2) Thermodynamics of post-combustion carbon capture process

THE LOW-GRADE HEAT EXCHANGE PROBLEM
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Carbon capture itself requires energy 
– Energy from reduction in entropy

– Heat of absorption/solution

– Heat from compression

Process temperature cycles between 
– Absorption (40 to 60°C)

– Desorption (120 to 150°C)

Heat integration
– Exhaust economic heat integration options first

– Net losses through low-grade heat exchange to 
environment (air and/or water)

Sample Pinch Analysis Curve
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KEY ISSUE
Capital Cost of Carbon Capture*
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*Sample FEED project, optimized with a hybrid air and cooling water design



CASE STUDY
Gas Turbine Exhaust
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CO₂ Concentration 4.5 wet vol%

CO₂ Flow Rate 4,631 MTPD

CO₂ Capture 4,400 MTPD

Temperature 200°C

Capture Efficiency 95%

Cooling Demand 6 GJ/tonne CO₂
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STUDY METHODOLOGY
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Equipment cost and total installed cost (TIC) from recent Fluor CCS projects 
(United States Dollar [USD] basis)

Wood-Mackenzie Method[1] utilized for levelized cost of carbon capture, 
10 percent discount rate, 25-year project life

Reference HMB is held constant for the study

Three process cooling methods considered (on the following slide)

Two project locations considered:

– Southern California, United States 

– Alberta, Canada

CCS is self supporting – i.e., no base plant utility availability for cooling

[1] P. Findlay and J. Mageau, "Towards a standard definition of levelised CCUS costs and revenues," in 17th International Conference on Greenhouse Gas Control Technologies, 
GHGT-17, Calgary, Canada, 2024. 



Cooling Water Air Cooling Secondary Medium

COOLING METHODS
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Cooling tower + P&F 
exchangers

High efficiency

Cooling water utility block 
dedicated plot space

Make-up water required

Higher water disposal 
rates

Air-cooled heat 
exchangers

Large ISBL plot space 
requirement

Low operating costs

No water requirements

No fluid disposal

Glycol or other 
non-freezing medium

P&F exchangers + 
air coolers

Initial chemical fill required

Metallurgy and 
winterization advantages



Alberta, Canada Example

AIR COOLING COST DRIVERS
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Winterization

SS MOCBase AC Cost

Air Cooler Cost Breakdown
Secondary cooling (using glycol)

– Eliminates winterization

– Reduces materials cost to about half

– Cost adder for the glycol loop (capex & opex)

– Net capex is lower, opex is higher

Operating costs are primarily electricity price
– No dependence on water



COOLING WATER COST DRIVERS
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RESULTS
Case Economics
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OPTIMIZATION OF DESIGN AIR TEMPERATURE

Alberta, Canada Example
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Ambient air temperature drives cooling in air cooling 
applications

Design air temperature, and the difference between 
design air and process temperature, drives cost

If the design air temperature is lower, costs are 
reduced but cooling is undersized on hot days

Opportunity to take advantage of lower design air 
temperature in colder climates
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OPTIMIZATION OF DESIGN AIR TEMPERATURE
How Much CO2 Recovery is Lost if Air Coolers are Undersized?
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SEASONAL INTEGRATION OF AIR COOLING
Alberta, Canada Case
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Results from Alberta, Canada Case Considering Seasonal Variability
COOLING IN A COLDER CLIMATE LOCATION  
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OTHER CONSIDERATIONS
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Hybrid cooling scheme optimization (air + water)

Process water balance control is important with 
seasonal variability

Solvent health and degradation

– Capture efficiency cannot be jeopardized

– Mitigate heat exchanger fouling

Flow scheme and process optimization

– Lean vapour compression

– Heat recovery opportunities



CONCLUSIONS
Optimization of Cooling for PCCC
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PCCC cooling requires significant capital cost

Climate (location) and utility availability constrain the 
facility

– Water cooling, if available, is more economically attractive

– Air cooling is less competitive using traditional approach

– Air cooling can be optimized for colder climates

No ‘single solution’ or wholistic approach available

Integration of CCS island and BOP presents opportunity to 
lower costs

Project economics are best optimized with a wholistic 
approach with the CCS technology provider  



THANK YOU

Jon Isley, P.Eng., Executive Technical Director, Fluor Canada
jon.isley@fluor.com
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