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FLUOR.
INTRODUCTION

Presentation is based on Fluor’s Econamine FG Plus®*" (EFG+) technology

» EFG+ is Fluor’'s commercially proven, proprietary post-combustion capture technology
» 30 plants built (to date)

» Designed for capturing CO, from low-pressure gas streams containing oxygen

» Experience with a wide range of flue gases

» Compilation of five pre-FEED studies on cooling optimization in 2024 to 2025

Gas Turb.me and CoaI:Flred Oil-fired Boilers
Engine Boilers

SMRin H,, NH; Tail Gas Units in Catalytic
and MeOH Plants Sulphur Plants Crackers ;

EFG+ application flue gas characteristics

CO, range 20%
O, range 15%
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THE LOW-GRADE HEAT EXCHANGE PROBLEM FLUOR.

1) Temperatures for carbon capture technology deployment

» Flue gas source is hot

— Typically 160 to 180°C downstream of economizer

— Further cooling challenged by available heat sinks and condensation
» Majority of capture technologies require modest temperatures

— Typically 40 to 60°C

— Aqueous solvents (traditional amines)

— Solid adsorbents

— Membranes

— Cryogenics (even lower)

» Cooling gap of 100 to 140°C
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FLUOR.
THE LOW-GRADE HEAT EXCHANGE PROBLEM

2) Thermodynamics of post-combustion carbon capture process

» Carbon capture itself requires energy
— Energy from reduction in entropy _5
— Heat of absorption/solution | e G
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KEY ISSUE
Capital Cost of Carbon Capture*

Plant Equipment Cost

Pumps
5% Packages
11%
Tanks
1% Columns &

Vessels
32%

Cooling
Demand

30% Compressors &
Blowers
17%

Heat
Exchangers
3%

Co2
Compressor
Interstage
Cooling

Overehead
Condenser

*Sample FEED project, optimized with a hybrid air and cooling water design

FLUOR.

Cooling Duty Breakdown (out of 30%)

CO2 Product
After Cooler

DCC Water
Cooler

Lean Solvent
Cooler

Absorber Wash
Water Cooler
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CASE STUDY

Gas Turbine Exhaust

FLUOR.

4.5 wet vol%

4,631 MTPD

4,400 MTPD

200°C

FLUE GAS STRIPPER O/H @0 €02 PRODUCT
TO ATMOSPHERE CONDENSER » —
COMPRESSION
===
REFLUX
ACCUMULATOR
WASH WATER WASH WATER COOLER DRUM
MAKE-UP
FROM WT == - ~ j
WASH WATER a"L"T'E‘;
N PUMP .‘
LUE Gas W, STRIPPER < co2
—— DEHYDRATION
LEAN SOLVENT —
cooteR LEAN VAPOUR REFLUX PUMP
COMPRESSOR
QUENCH
WATER
DIRECT COOLER
CONTACT
cooter ‘
|
ABSORBER Lp .
/ CO, Concentration
/ 2
2 ) REBOILER
LP
<~ CO, FlowR
ow Rate
FLASH 2
DRUM
FLUE GAS
CO, Capture
RICH AMINE EXCHANGER LEAN AMINE PUMP 2
PUMP SPENT
AMINE
[emperature
S 2‘_ SOLVENT
AMINE MAINTENANCE
AMINE
QUENCH WATER \Q/J\;GEE VIAKEUP STORAGE SYSTEM . .
PUMP & MAKEUP
PUMP

95%

Cooling Demand

6 GJ/tonne CO,

S

PCCC-8

CA20250001 6



FLUOR.
STUDY METHODOLOGY

» Equipment cost and total installed cost (TIC) from recent Fluor CCS projects
(United States Dollar [USD] basis)

» Wood-Mackenzie Method!!! utilized for levelized cost of carbon capture,
10 percent discount rate, 25-year project life

» Reference HMB is held constant for the study
» Three process cooling methods considered (on the following slide)

» Two project locations considered:
— Southern California, United States
— Alberta, Canada

» CCS is self supporting — i.e., no base plant utility availability for cooling @

[11 P. Findlay and J. Mageau, "Towards a standard definition of levelised CCUS costs and revenues," in 17th International Conference on Greenhouse Gas Control Technologies,
GHGT-17, Calgary, Canada, 2024. p C C C- 8
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FLUOR.
COOLING METHODS

Cooling Water Air Cooling Secondary Medium
» Cooling tower + P&F » Air-cooled heat » Glycol or other
exchangers exchangers non-freezing medium
» High efficiency » Large ISBL plot space » P&F exchangers +
» Cooling water utility block requirement air coolers
dedicated plot space » Low operating costs » Initial chemical fill required
» Make-up water required » No water requirements » Metallurgy and
» Higher water disposal » No fluid disposal winterization advantages

rates
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FLUOR.
AIR COOLING COST DRIVERS

Alberta, Canada Example

Air Cooler Cost Breakdown
» Secondary cooling (using glycol)

— Eliminates winterization
— Reduces materials cost to about half

Winterization

— Cost adder for the glycol loop (capex & opex)

— Net capex is lower, opex is higher

BaseAC Cost » Operating costs are primarily electricity price

— No dependence on water
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COOLING WATER COST DRIVERS

Capital Cost Breakdown

Cooling Water
Pumps

P&F Exchangers

Water
Treatment

Cooling Tower

Chemicals

FLUOR.

Operating Costs Breakdown

Water Disposal

Cooling Tower
Electricity

Pump
Electricity
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RESULTS

Case Economics
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FLUOR.

OPEX
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FLUOR.
OPTIMIZATION OF DESIGN AIR TEMPERATURE

Alberta, Canada Example

» Ambient air temperature drives cooling in air cooling Mean Average Air Temperature
applications

» Design air temperature, and the difference between
design air and process temperature, drives cost

» If the design air temperature is lower, costs are
reduced but cooling is undersized on hot days

» Opportunity to take advantage of lower design air
temperature in colder climates
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FLUOR.
OPTIMIZATION OF DESIGN AIR TEMPERATURE

How Much CO2 Recovery is Lost if Air Coolers are Undersized?
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FLUOR.
SEASONAL INTEGRATION OF AIR COOLING

Alberta, Canada Case
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FLUOR.
COOLING IN A COLDER CLIMATE LOCATION

Results from Alberta, Canada Case Considering Seasonal Variability
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FLUOR.
OTHER CONSIDERATIONS

» Hybrid cooling scheme optimization (air + water)

» Process water balance control is important with
seasonal variability

» Solvent health and degradation

— Capture efficiency cannot be jeopardized

— Mitigate heat exchanger fouling

» Flow scheme and process optimization

| i 1 - . e
Bellingham Stripper (left), Absorber (middle),
and Direct Contact Cooler (right)
Bellingham, Massachusetts, U.S.

— Lean vapour compression

— Heat recovery opportunities
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FLUOR.
CONCLUSIONS

Optimization of Cooling for PCCC

» PCCC cooling requires significant capital cost

» Climate (location) and utility availability constrain the
facility

— Water cooling, if available, is more economically attractive
— Air cooling is less competitive using traditional approach

— Air cooling can be optimized for colder climates
» No ‘single solution’ or wholistic approach available

» Integration of CCS island and BOP presents opportunity to
lower costs

Carbon Capture Technology

» Project economics are best optimized with a wholistic - Demonstration Plant

Wilhelmshaven, Germany

approach with the CCS technology provider
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THANK YOU

Jon Isley, P.Eng., Executive Technical Director, Fluor Canada
jon.isley@fluor.com
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