

A welcome from TotalEnergies

PÉTROLE

G

ÉLECTRICITÉ

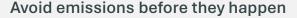
HYDROGÈNE

BIOMASSE

ÉOLIFI

SOI AIR

CCS and CCU as parts of the industrial carbon management chain



- Energy mix evolution: multi-energy approach
- Sanction projects with lowest possible emissions
- Design assets to limit emissions

Reduce

Reduce emissions of existing assets

- Development of Carbon Footprint Reduction projects and practices
- CCS projects for TotalEnergies' assets
- Utilize CO₂ for eFuels and other materials

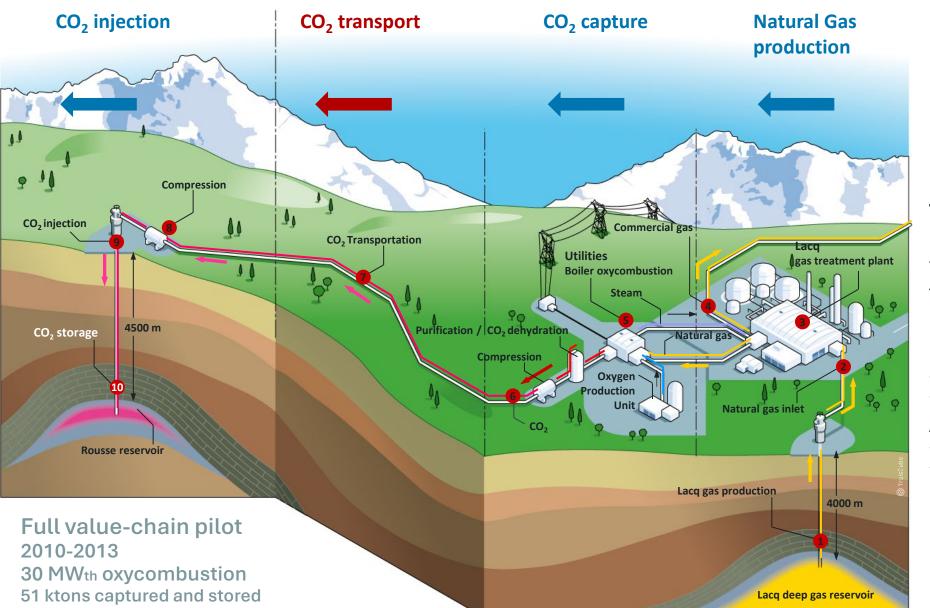
Scope 1 & 2 emissions

- GHG emission reductions of 40% by 2030
- C-neutrality by 2050
- Merchant T&S to tackle scope 3

Compensate

- Compensate for residual emissions that could not be avoided or reduced:
 - Natural Based Solutions: developing natural carbon sinks
 - Other offsetting solutions incl.
 Cookstoves, Direct Air Capture CCS
 (DACCS), Bio-Energy CCS (BECCS)...
- Support decarbonization of our customers: CCS as a service focused on transport and storage

Lacq and Rousse: A complete CCS chain



Take home points

Full CCS chains are largely feasible

Technical difficulties manageable

More difficult to manage:

- Public perception
- Political acceptance

Additional points

- Small scale project
- Things have changed since 2013

Northern Lights development; leveraging the existing onshore and offshore infrastructure in Øygarden, Norway.

Phase 1: 1.5 Mtpa

CO₂ from:

- Cement (Heidelberg, Brevik, NO)
- Ammonia prod. (Yara, NL)
- Waste to Energy (Stockholm Exergi (SE), Ørsted (DK), ... Celsio (NO))

Deploying CCS strategy

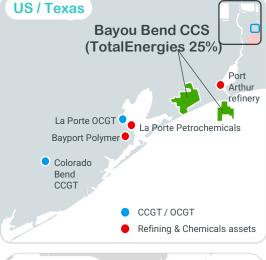
Reducing emissions and developing profitable business

- Ichthys (Australia) under study
- · Cameron LNG (US) **Hackberry Carbon Sequestration** project under study (with potential to decarbonize other industrial emitters)
- Refineries

North Field East & South (Qatar)

Offering CCS services

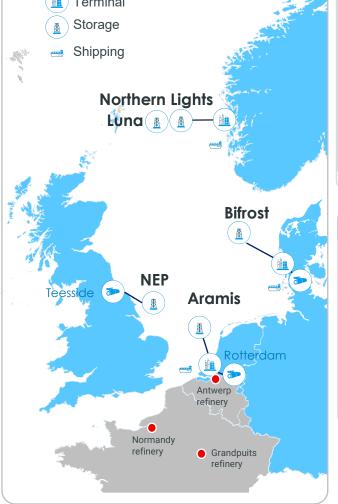
Build a profitable, scalable business and offset Scope 3 emissions by offering CCS solutions to our customers


North Sea core area

- · Construction completed, Northern Lights
- Under development/study:
 - Focusing on our depleted assets and saline aquifers
 - Aramis (NL, op.), Bifrost (Denmark, op.), NEP (UK), Luna (Norway)

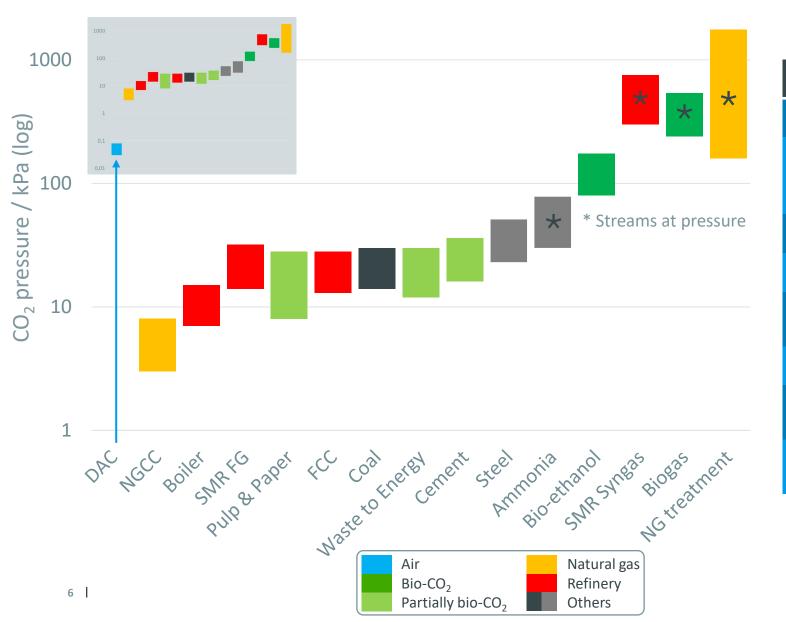
Worldwide growth

Bayou Bend (US), Southern Cluster (Malaysia)



2030 target (Company share)

> 10 Mt/y



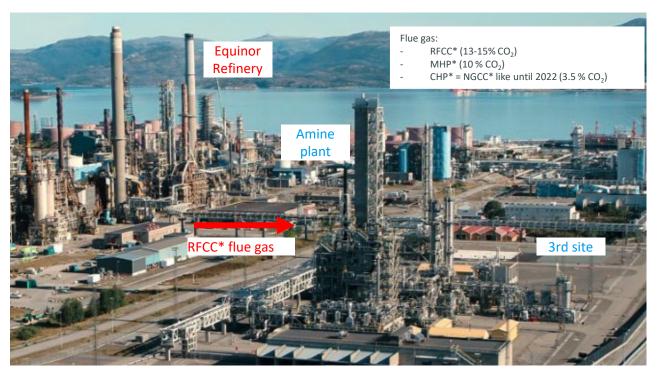
A diversity of sources where we can capture CO₂

→ which ones are best suited for capture? Sector, Techno., Quantity, Time for deployment

Stream	Main	Contaminant
Air	N ₂	O ₂ , H ₂ O
NGCC, boiler, SMR FG	N ₂	O ₂ , H ₂ O, NO ₂
P&P	N ₂	VOC, CO, NOx, SOx, dust
FCC, coal	N_2	O ₂ , H ₂ O, NOx, SOx, dust (Hg)
WtE, cement	N_2	NOx, SOx, HCl, HF, metals, dioxins, furans
Steel	N_2	CO, H ₂ , particulates
SMR SG	CO, H ₂	CH ₄
NG, biogas	CH ₄	H ₂ S

- Key challenge of contaminants
- Developing Hubs or Clusters

TCM Norway



Objectives: open test center for accelerating CO₂ capture deployment and technology derisking

Amine Plant (75 kT_{CO2}/y \sim 12 MWe)

- Benchmark of solvents at the industrial scale ⇒ TRL 6-7
- Evaluation of Solvent performance
 - Energy
 - Solvent Degradation
 - Solvent Emission Monitoring
- Design data for scale up
- Operational issues (corrosion, foaming...)

3rd site (18 kT_{CO2}/y \sim 3 MWe)

Plug and play, non-solvent technologies

⇒ More disruptive technologies, lower TRL (4-5)

RFCC: Residue Fluid Catalytic Cracking MHP: Mongstad Heat Plant CHP: Combined Heat and Power NGCC: Natural Gas Combined Cycle power plant

2012 - 2014 2012 ALSTOM

2014 - 2015

2015 - 2016

2016

2016 - 2017

2019

2021

2022

2023

TotalEnergies is agnostic with respect to capture

A broad diversity of 'emerging' CO₂ capture technologies

Air

Biogenic

Biogas Fermentation

Process

Cement Steel Refinery Nat. Gas treatment

Energy

Coal NGCC ... boilers

Absorption (alt. solvents)

Syngas TRL 8 Flue gas TRL 6 DAC TRL 6

Well established Pure CO₂

Membranes

Natural gas TRL 4-5

Biogas

Flue gas

Heat demand High capex & Layout Atmospheric emissions & waste

Cryogenic liquefaction

TRL 8 Syngas TRL 5-7 Flue gas DAC

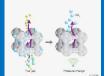
No heat required Pure CO₂ No atmospheric emissions

Electricity demand High capex

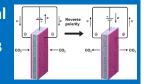
 CO_2 preconcentration (15% \rightarrow 50%)

Oxycombustion

Boilers TRL 7 **FCC** TRL 4 - 5


No heat required For gas turbines: high efficiency

Oxygen demand Low purity CO₂, requires purification


Adsorption

Flue gas TRL 4 – 6 DAC TRL 6

Electrochemical

DAC TRL 2-3

No heat required Potentially v. low energy demand

Electrode degradation Electrode design Efficiency

Electricity demand Low purity CO₂

No heat required

TRL 9

TRL 2

No atmospheric emissions

Heat or Power demand Low purity CO₂

No atmospheric emissions

Suitable for pre-concentration

Key technology for DAC

- As of today, not **ONE** capture technology stands out from the others
- The selection is very related to the application and the context
- Solutions combining several technologies may have advantages
- Costs highly dependent on site, rendering wide ranging R&D estimations
- Question: what technology will be mature for what source, and WHEN?

CCUS: multi-disciplined challenges

... but where are the bottlenecks?

Point Source

Carbon Dioxide

Capture

Power

Generation

Conditioning Compression

Transport

SINK

Geological Storage

Deep Saline Reservoirs

(Chalk, Basalt)

Removal

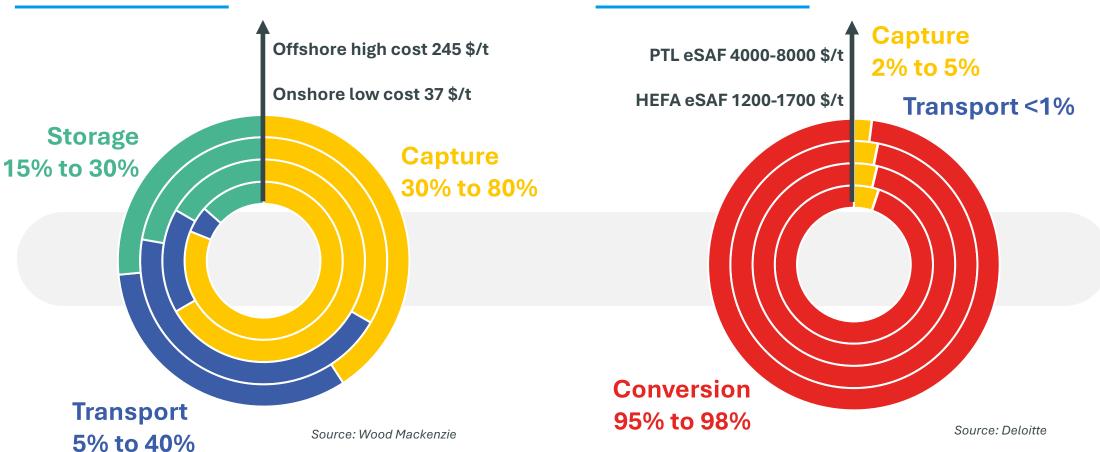
Process

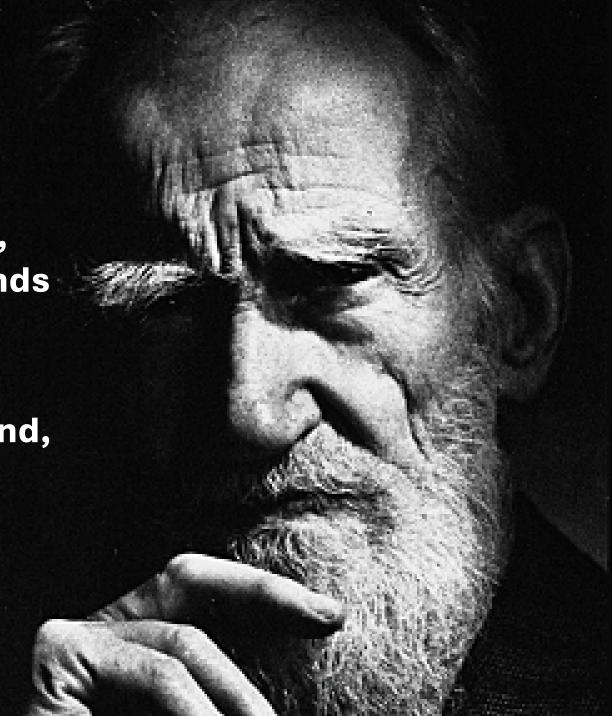
Sources

Refineries

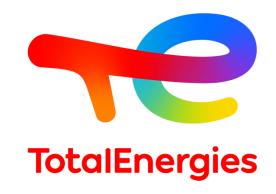
Barge / Ship

What drives the cost of the CO₂ abatement?





George Bernard Shaw


Progress is impossible without change, and those who cannot change their minds cannot change anything.

If all the economists were laid end to end, they'd never reach a conclusion.

A welcome from TotalEnergies

PÉTROLE

G

ÉLECTRICITÉ

HYDROGÈNE

BIOMASSE

ÉOLIFI

SOI AIR