

Modeling and precipitation mitigation in PZ-based CO₂ capture solvents

<u>Can Demir</u>¹, Randi Neerup¹, Isaac Appelquist Løge¹, Jens Abildskov², Philip Loldrup Fosbøl¹

¹Center for Energy Resources Engineering (CERE), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)

²Process and System Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)

Outline

- PZ chemistry
- The extended UNIQUAC model in the context of CO₂ capture using precipitating solvents
- Validation of the extended UNIQUAC model for the PZ-CO₂-H₂O system
 - VLE
 - Speciation
 - SLE
 - CO₂ heat of absorption
- Pilot-scale CO₂ capture with PZ-promoted amines
- Plant operation philosophy with PZ-promoted amines
- Conclusions and future work

Chemistry

PZ properties

Melting point: 111 °C

Boiling point: 146 °C

Modeling

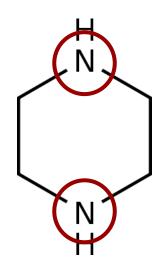
Liquid phase: Extended UNIQUAC

– Gas phase: SRK EoS

VLE: γ–φ approach

• $x_i \gamma_i f_i = y_i \phi_i P$

Ion interaction parameters fitted for 6 PZ species


 H₂PZ, PZH⁺COO⁻, PZH⁺, PZH₂²⁺, PZCOO⁻, PZ(COO⁻)₂

1200 new data points from the PZ literature were used

Screened for questionable quality

Made available in CERE electrolyte data bank

Total 150,000+ data points available to the CERE consortium members

PZ speciation in the liquid phase

- CO₂-water reactions
 - $H_2O \to H^+ + OH^-$
 - $HCO_3^- + OH^- \to CO_3^{2-} + H_2O$
- PZ speciation is complex

•
$$PZ_{(aq)} + H^+ \rightarrow PZH^+$$

•
$$PZH^+ + H^+ \to PZH_2^{2+}$$

- PZ forms three carbamates
 - A zqitterionic type PZH⁺COO⁻

•
$$PZCOO^{-} + H^{+} \rightarrow PZH^{+}COO^{-}$$

- Two active nitrogen groups to bing CO₂, two carbamates: PZCOO-, PZ(COO-)₂

•
$$PZ_{(aq)} \rightarrow HCO_3^- \rightarrow PZCOO^- + H_2O$$

•
$$PZCOO^- + HCO_3^- \to PZ(COO^-)_2 + H_2O$$

- Precipitating solid phases
 - PZ, PZ·1/2H2O, PZ·6H2O, Ice

Setting up the chemical framework: Concentration scales

Activity coefficient types

$$-\mu_{i} = \mu_{i}^{\theta_{S}} + RT ln \left(\frac{s_{i} \gamma_{i}^{\theta_{S}}}{s_{i}^{\theta}} \right)$$

$$= \mu_{i}^{o_{X}} + RT ln \left(\frac{x_{i} \gamma_{i}^{o_{X}}}{x_{i}^{o}} \right)$$

$$= \mu_{i}^{*_{X}} + RT ln \left(\frac{x_{i} \gamma_{i}^{*_{X}}}{x_{i}^{*_{X}}} \right)$$

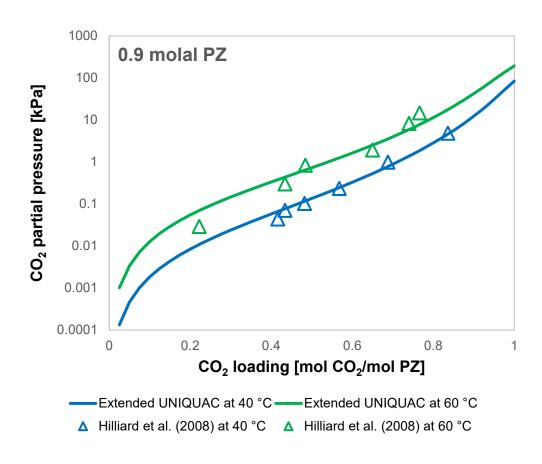
$$= \mu_{i}^{*_{M}} + RT ln \left(\frac{b_{i} \gamma_{i}^{*_{M}}}{b_{i}^{*_{X}}} \right)$$

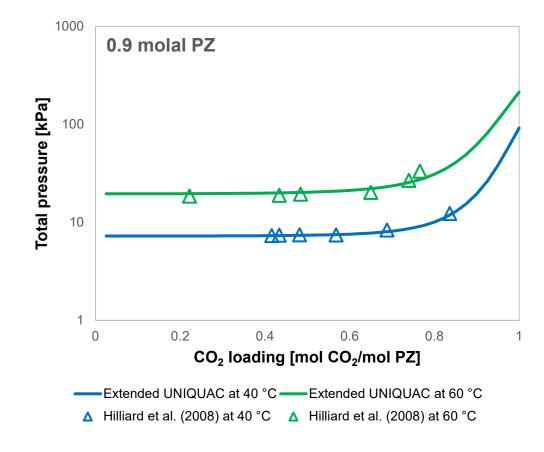
$$= \mu_{i}^{*_{C}} + RT ln \left(\frac{c_{i} \gamma_{i}^{*_{C}}}{c_{i}^{*_{C}}} \right)$$

 Concentration scale should be independent of temperature:

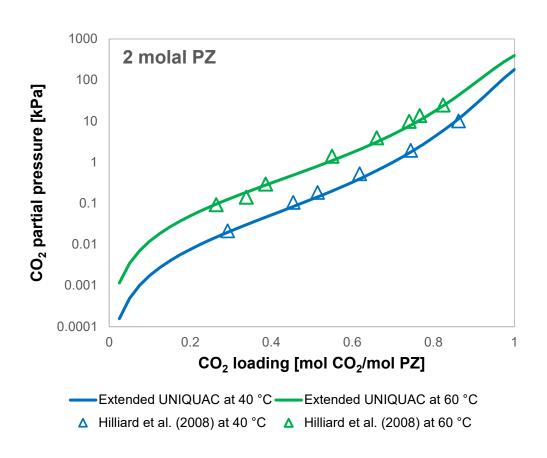
$$-\gamma_i^{*m} = x_S \gamma_i^{*x} = x_S \frac{\gamma_i^{o_X}}{\gamma_i^{o_X}} = x_S \gamma_i^{*c} \frac{\rho_t}{\rho_s} \frac{M_s}{\overline{M}_t} = \gamma_i^{*c} \frac{\rho_t}{\rho_s} \frac{m_s}{m_t}$$

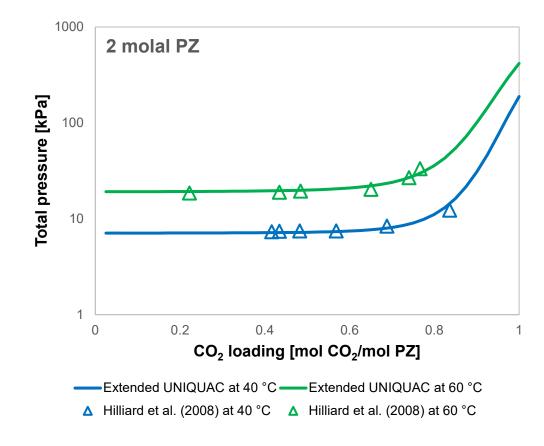
 Reporting thermophysical data in molarity scale strictly complicates model parametrization with electrolyte solutions involved such as CO₂ into aqueous amines!

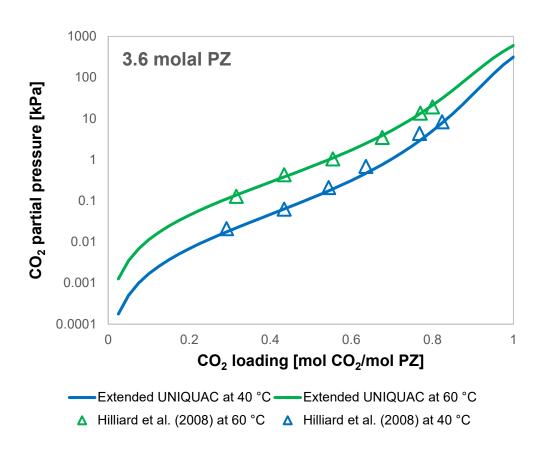


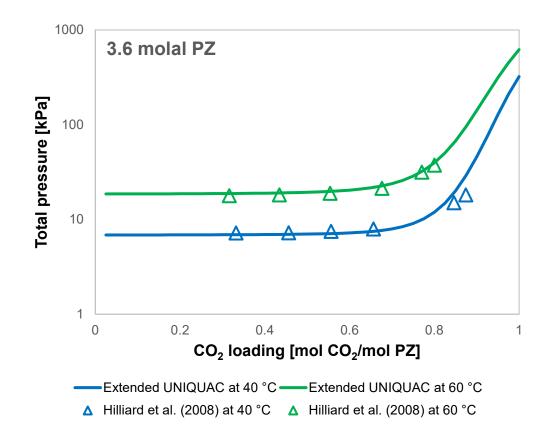

Extended-UNIQUAC model framework

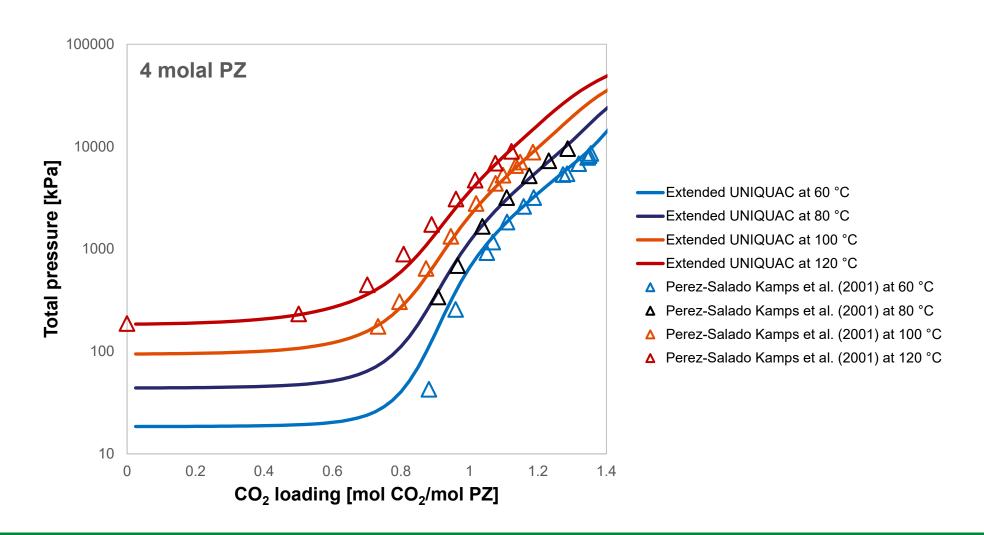
- A local composition model derived by Prof. Emeritus Kaj Thomsen from the original UNIQUAC model (Abrams & Prausnitz, 1975 and Maurer & Prausnitz, 1978)
 - The extra Debye-Hückel term accounts for electrostatic interactions.
 - $G^{ex} = G^{ex}_{combinatorial} + G^{ex}_{residual} + G^{ex}_{Extended Debye-Hückel}$
 - Combinatorial term is independent of temperature but related to the relative size of the species.
 - Residual enthalpic term is temperature dependent with two adjustable parameters to be fitted per pair of species.
 - Debye–Hückel term derives the electrostatic term
 - Accounts for the ion interactions simpler than the original Debye–Hückel law.
 - No adjustable term, function of density and relative permittivity of pure water.
 - Shown to calculate the activity coefficients of electrolyte solutions accurately.
- Currently, the only thermodynamic model able to predict solid phase for complex electrolyte solutions reliably is the extended UNIQUAC. Shown by Darde & Thomsen et al., Comparison of two electrolyte models for the carbon capture with aqueous ammonia. Int. J. Greenh. Gas Control, 8, 2012, 61–72, https://doi.org/10.1016/j.ijggc.2012.02.002).


Validation of CO₂-PZ-H₂O system: VLE at low T

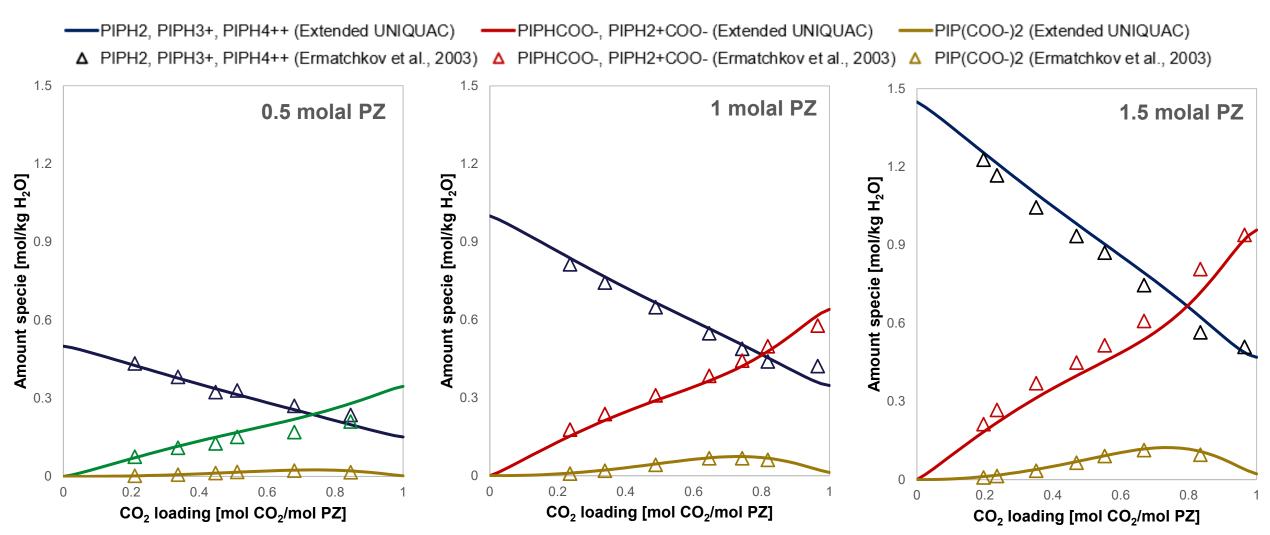



Validation of CO₂-PZ-H₂O system: VLE at low T




Validation of CO₂-PZ-H₂O system: VLE at low T

Validation of CO₂-PZ-H₂O system: VLE at higher T

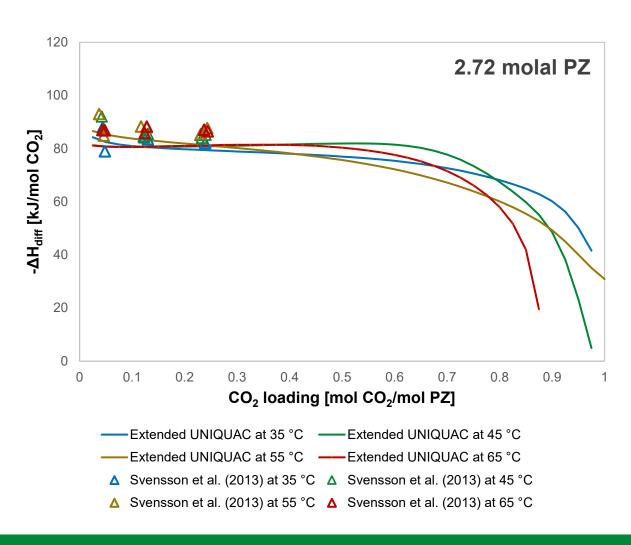


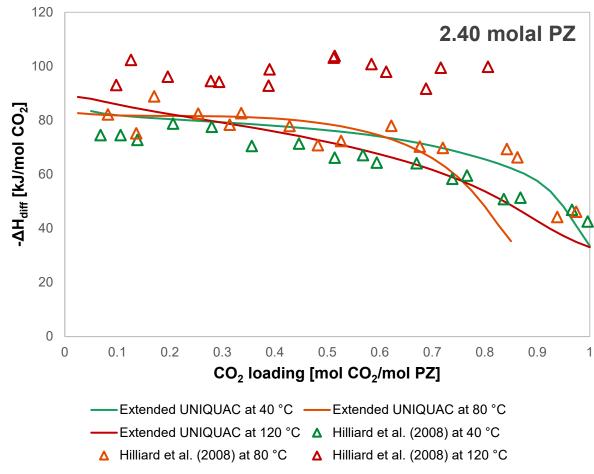
17-09-2025 DTU Chemical Engineering Can Demir

10

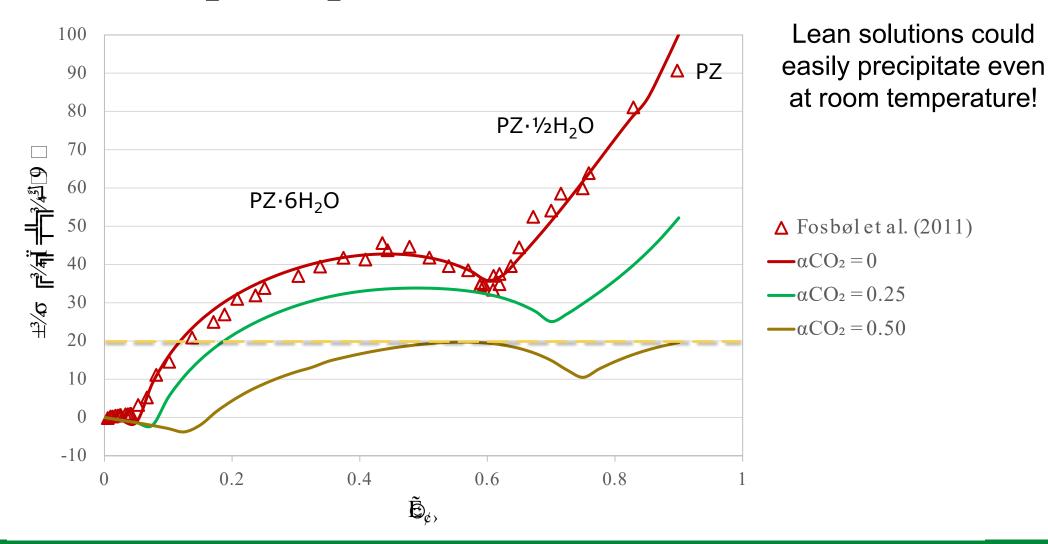


Validation of CO₂-PZ-H₂O system: Speciation at low T (25 °C)

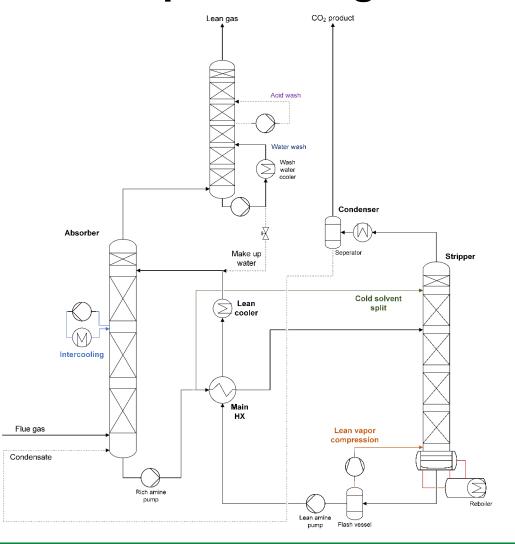



Validation of CO₂-PZ-H₂O system: Speciation at higher T (60 °C)

Heat of CO₂ absorption for the CO₂-PZ-H₂O system



13



SLE of CO₂-PZ-H₂O system

Pilot-scale CO₂ capture in a cement plant using PZ

Process flow diagram & pilot-scale CO₂ capture plant used in Aalborg Portland cement plant to test advanced process configurations.

Chemical Engineering Journal 506 (2025) 159429

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Pilot-scale CO₂ capture in a cement plant with CESAR1: Comparative analysis of specific reboiler duty across advanced process configurations

Isaac Appelquist Løge ^a, Can Demir ^a, Sai Hema Bhavya Vinjarapu ^a, Randi Neerup ^a, Ebbe Hauge Jensen bo, Jens Kristian Jørsboe a,b, Maria Dimitriadi ao, Halil Halilov c Carsten Fritzner Frøstrup ^a, Istvan Gyorbiro ^a, Nomiki Kottaki ^a, Asams Nelliparambil Jayan ^e Søren Jensen d, Jakob Lindkvist Karlsson D, Philip Loldrup Fosbøl

- ^a Technical University of Denmark, Department of Chemical Engineering, Soltofts Plads 228A, Kgs. Lyngby, 2800, Denmark
- Rambøll Danmark, Hannemanns Allé 53, København S, 2300, Denmar Aalborg Portland A/S. Rørdalsvei 44, Aalborg Øst, 9220, Denmark
- ^d Pentair Union Engineering A/S, Snaremosevej 27, Fredericia, 7000, Denmar
 ^e Kvasir Technologies, Maskinvej 5, Søborg, 2860, Denmark

ARTICLE INFO

CO₀ capture in cement plants

CESAR1 solvent efficiency

Advanced carbon capture configurations

Carbon Capture and Storage (CCS) from hard-to-abate sources is essential to mitigate the impacts of climate change. The CESAR1 solvent is considered the new benchmark solvent; however, its performance is limited in a wide range of advanced process configurations in pilot-scale studies. The scarcity of reliable pilot data from realistic setups retards the rapid advancement of CO, capture technology, as it hinders the accurate modeling and design of full-scale plants. In this work, we assess the applicability of the CESAR1 solvent for CO2 capture in the cement industry at pilot scale, utilizing various advanced process configurations. Here, we present the specific reboiler duty of the CESAR1 solvent utilized in base-case configuration, absorber intercooling, stripper cold feed, variable stripper pressures, and lean vapor compression. All results are presented from verified steady states, including rigorous uncertainty analysis. In the base-case configuration, the plant operates with a specific reboiler duty of 3.39 GJ/t_{CO}. The lowest specific reboiler duty for stripper cold feed, absorber intercooling, variable stripper pressures, and lean vapor compression were 3.35 GJ/t_{CO2}, 3.10 GJ/t_{CO2}, 2.53 GJ/t_{CO2}, and

Chemical Engineering Journal 518 (2025) 163900

Contents lists available at ScienceDirect

Chemical Engineering Journal

Pilot-scale CO₂ capture in a cement plant with CESAR1: Higher stripper pressure reduces energy demand and compression work but increases solvent degradation

Isaac Appelquist Løge ao, Can Demir o, Sai Hema Bhavya Vinjarapu o, Randi Neerup o, Ebbe Hauge Jensen b, Jens Kristian Jørsboe a,b, Maria Dimitriadi a D, Vanja Buvik O, Halil Halilov c, Carsten Fritzner Frøstrup o, Istvan Gyorbiro o, Nomiki Kottaki A, Asams Nelliparambil Jayan ^e, Søren Jensen ^d, Jakob Lindkvist Karlsson ^d, Philip Loldrup Fosbøl ^e

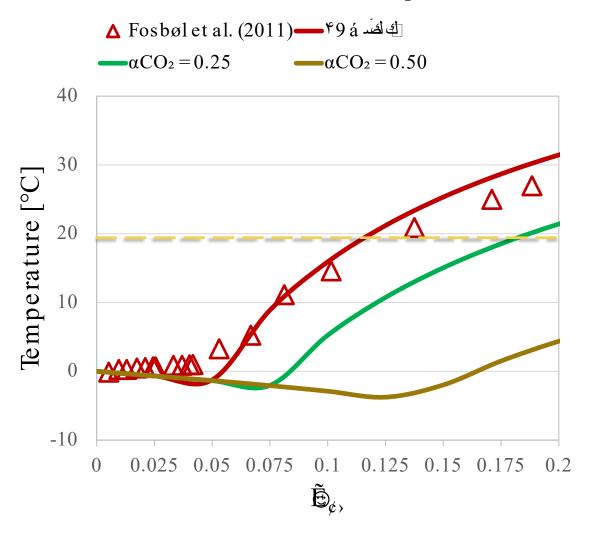
- a Technical University of Denmark, Department of Chemical Engineering, Soltofts Plads 228A, Kgs. Lyngby, 2800, Denmark
- b Rambøll Danmark, Hannemanns Allé 53, København S, 2300, Denn c Aalborg Portland A/S, Rørdalsvei 44, Aalborg Øst, 9220, Denmark
- d Pentair Union Engineering A/S, Snaremosevej 27, Fredericia, 7000, Denmark Kvasir Technologies, Maskinvej 5, Søborg, 2860, Denmark
- SINTEF, Strindvegen 4, Trondheim, 4760, Norway

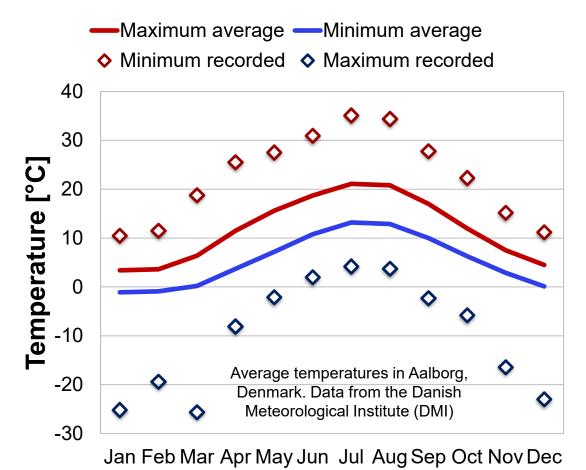
ARTICLE INFO

CO₂ capture CESAR1

ABSTRACT

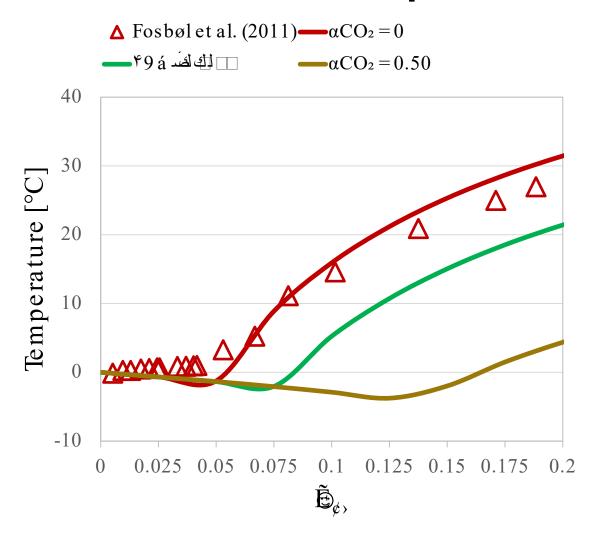
Carbon capture from hard-to-abate industries is essential. This study investigates the effect of stripper pressure on the performance of amine-based CO, capture from cement flue gas, using the CESAR1 solvent. Through a rigorous data filtering and binning methodology, experimental results were systematically categorized, enabling a precise evaluation of how stripper pressure and stripping intensity affect solvent regeneration, thermal efficiency, and subsequent energy demands. Additionally, a holistic analysis of operating with altered stripper pressure is presented, where downstream compression and solvent degradation are considered. Increasing stripper pressure consistently improves capture efficiency, reduces lean solvent loading, and increases the cyclic capacity, ultimately leading to lower specific reboiler duty.


Higher stripper pressure also enhances lean-rich heat exchanger performance by improving temperature differentials. Operating at higher pressure reduces the water load on the overhead condenser, even at elevated temperatures. These conditions, in turn, mitigate overall cooling duties. Elevated stripper pressure decreases both reboiler duty and compression work. From our results, operating at higher pressures does not presen downsides. However, degradation rates increase at elevated temperatures. We suggest that the standard operating pressure for capturing CO, with the CESAR1 solvent be evaluated, as it provides an opportunity for reduced energy consumption while also monitoring solvent health over extended periods.


17-09-2025

DTU Chemical Engineering

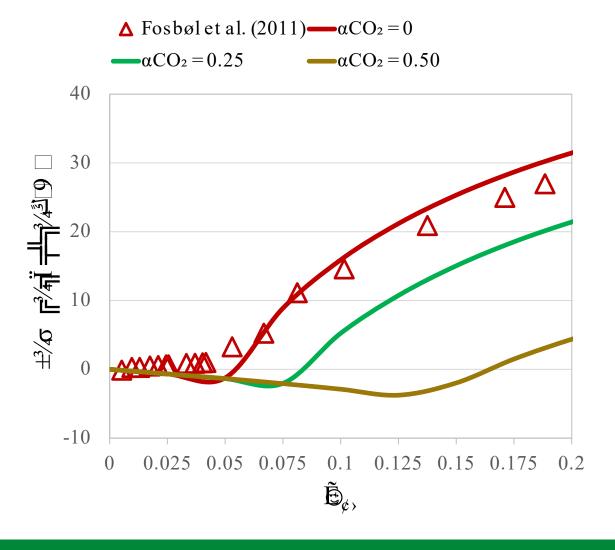
Year-round capture at TRL7 with PZ involved

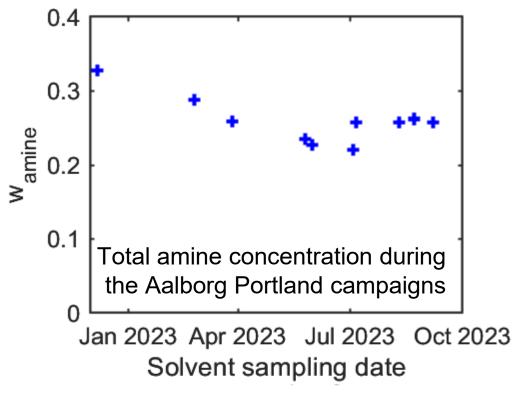


Month

16

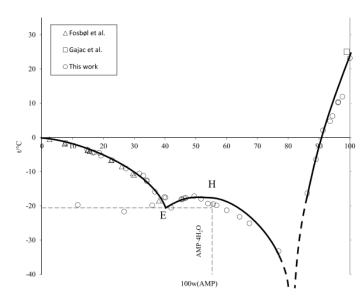
Year-round capture at TRL7 with PZ involved

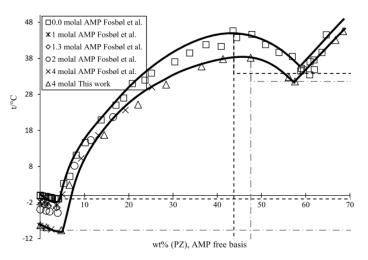




Heating jacket around the PZ barrel to maintain the liquid phase.

Plant operation is subject to PZ precipitation





Conclusions

- Modeling philosophy for aqueous amines with CO₂
 - Concentration units should be based without any temperature dependency, fx: molality
 - Solid phase cannot be ignored when PZ is involved
- Model validation
 - Solid-liquid-vapor equilibrium (VLE & SLE)
 - Speciation
- The extended UNIQUAC model for the CO₂-PZ-H₂O system is validated and available in MS Excel macro with possible interpretation to Aspen Plus
 - Accurate thermodynamic property calculations
 - Process simulation, design, optimization, and intensification
- Work in progress: The extended UNIQUAC model for the CESAR blend (CO₂-AMP-PZ-H₂O) system
 - should be available by GHGT-18, see you in Perth, Australia? ☺

Experimental SLE of the AMP-H₂O system. Neerup et al. (2019)

Experimental SLE of the AMP-PZ-H₂O system. Fosbøl et al. (2019)

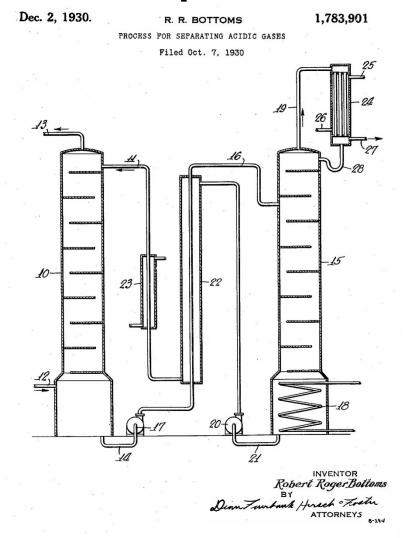
Acknowledgements

- Prof. Emeritus Kaj Thomsen for developing the Extended UNIQUAC model (1999).
- Financial support from INNO-CCUS (Pool 1, Project 1-P1 CORT — Carbon Capture Open Tests and Review of Technologies).
- Otto Mønsteds Fond for partially funding my attendance at PCCC8.
- My colleagues for encouraging my sustainable travel choices.
 - Especially, Isaac Appelquist Løge!

Thanks for your attention!

Can Demir

cande@kt.dtu.dk
linkedin.com/in/candemir97/
twitter.com/candemir97



Acid-gas removal was patented in 1930

eNRTL framework for CESAR compositions

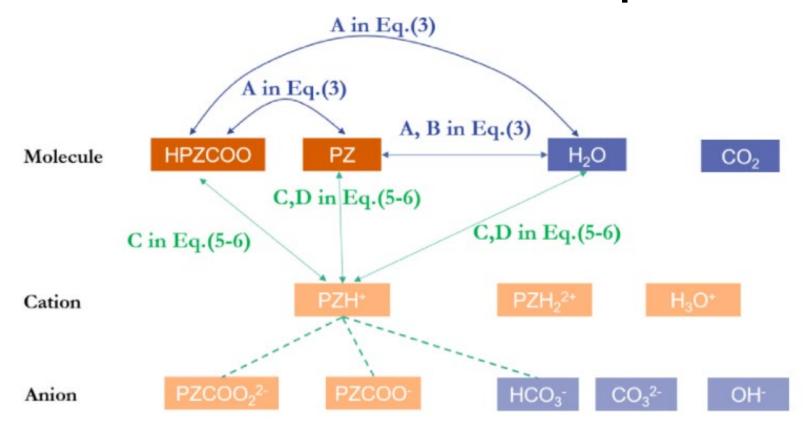
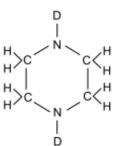
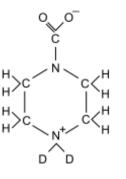


Figure by Spek et al. Separation and Purification Technology DOI: 10.1016/j.seppur.2024.127924


17-09-2025 DTU Chemical Engineering Can Demir

24

Speciation in the CO₂-PZ-H₂O system


Figure by Ermatchkov et al. J. Chem. Thermodynamics 35 (2003) 1277-1289

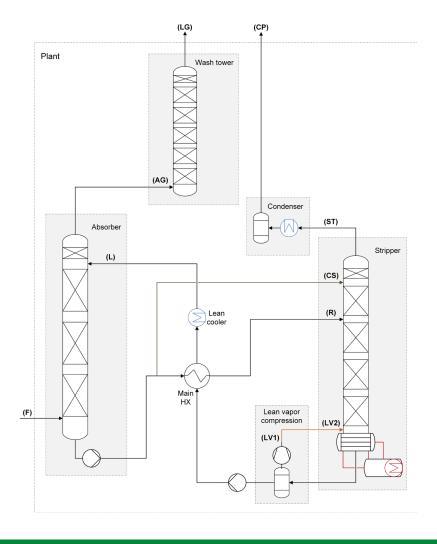
Piperazine

(PIPD₂)

Protonated Piperazine (PIPD₃)

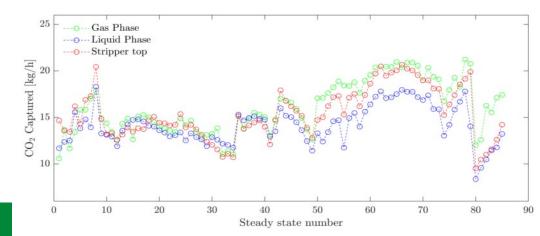
Protonated Piperazine Carbamate

Diprotonated Piperazine $(PIPD_4^{2+})$

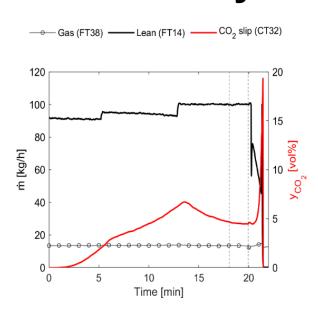

Piperazine Dicarbamate $(PIP(COO^-)_2)$

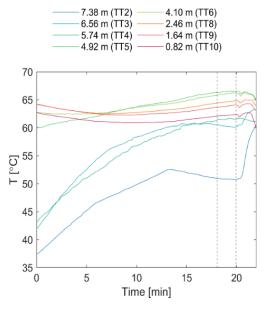
Piperazine Carbamate (PIPDCOO⁻)

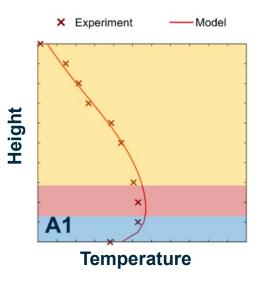
(PIPD2COO)

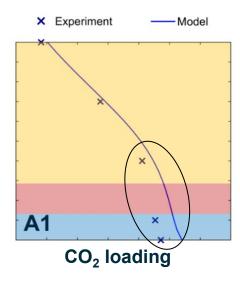


Data reconciliation to ensure accuracy in CO₂ capture and plant performance evaluation


- Gas phase
 - Based on the gas phase CO₂ concentrations and flow rates of the flue gas (F) and cleaned lean gas (LG).
 - $\dot{m}_{CO_2,gas} = \left(y_{CO_2,in} \cdot \dot{n}_{flue\ gas,in} y_{CO_2,out} \cdot \dot{n}_{flue\ gas,out} \right) \cdot M_{CO_2}$
- Liquid phase
 - Based on the liquid phase CO₂ loadings and flow rates of the lean (L) and rich solvent (R).
 - $\dot{m}_{CO_2, liquid} = (\alpha_{rich} \cdot \dot{n}_{rich, amine} \alpha_{lean} \cdot \dot{n}_{lean, amine}) \cdot M_{CO_2}$
- Stripper top
 - Based on the CO₂ flow rate at the condenser (CP).
 - $\dot{m}_{CO_2,stripper} = \dot{m}_{condenser,gas} \dot{m}_{water,condenser,gas}$


CO₂ captured flow estimated by three methods (adapted from Sai Hema Bhavya Vinjarapu).





Reconciled plant variables tell more about the steady states

27

 ϵ/σ values after the data reconciliation problem

SS label	Gas flow ∙10³	CO ₂ feed •10 ³	Lean flow ∙10³	CO ₂ slip •10 ⁵	w _{CO2,lean} ∙10²	W _{CO2,rich}	W _{amine,1} ∙10 ⁴	w _{amine,2} ∙10 ⁶	y _{H2O,gasout} ∙10²	y _{H2O,recycle} ∙10²
A1	-2.744	74.86	-10.91	2.157	5.518	-1.256	1.732	15.57	-4.91	15.76
A3	0.160	49.89	-10.68	1.888	4.811	-0.9438	-0.01062	2.067	0.123	-0.2006
A5	0.180	79.13	-13.46	39.12	6.527	-1.380	-0.01133	1.501	0.167	-0.3335
В3	0.177	3.661	-7.319	-92.75	1.550	\ -0.687 /	-0.01856	-0.1295	0.514	-0.2560
C1	-4.63	50.87	-22.47	0.0000	2.944	\-0.8083	503.56	2011	-10.47	22.76
C2	-17.5	154.4	-120.9	0.2554	8.891	-2.031	1782.7	7118	-22.15	33.02

problem identified