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Mass transfer contactors 
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WWC flowsheet

1.2 L
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𝑝𝑝𝐶𝐶𝐶𝐶2
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G-L interface

G film L film

Mass transfer: two-film theory 
The mass transfer of CO2 from the gas phase into the liquid phase can be described using the two-
film theory (Lewis et al., 1924).

𝑁𝑁𝐶𝐶𝐶𝐶2
𝐺𝐺 = 𝑘𝑘𝐺𝐺 � 𝑝𝑝𝐶𝐶𝐶𝐶2

𝑏𝑏 − 𝑝𝑝𝐶𝐶𝐶𝐶2
𝐼𝐼

𝑁𝑁𝐶𝐶𝐶𝐶2
𝐿𝐿 = 𝑘𝑘𝐿𝐿 � [𝐶𝐶𝐶𝐶2]𝐼𝐼 − [𝐶𝐶𝐶𝐶2]𝑏𝑏

= 𝑘𝑘𝐺𝐺′ � 𝑝𝑝𝐶𝐶𝐶𝐶2
𝐼𝐼 − 𝑝𝑝𝐶𝐶𝐶𝐶2

∗

𝑁𝑁𝐶𝐶𝐶𝐶2 = 𝐾𝐾𝐺𝐺 � 𝑝𝑝𝐶𝐶𝐶𝐶2
𝑏𝑏 − 𝑝𝑝𝐶𝐶𝐶𝐶2

∗
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At steady-state, the fluxes across each mass transfer films are the same (𝑁𝑁𝐶𝐶𝐶𝐶2
𝐺𝐺 = 𝑁𝑁𝐶𝐶𝐶𝐶2

𝐿𝐿 = 𝑁𝑁𝐶𝐶𝐶𝐶2) and
the mass transfer coefficients can be written in the series resistance form:

1
𝐾𝐾𝐺𝐺

= 1
𝑘𝑘𝐺𝐺

+ 1
𝑘𝑘𝐺𝐺
′

In a typical WWC experiment the steady-state NCO2 is measured and by defining the appropriate
driving force along the WWC, it is possible to evaluate the KG parameter.

HOW DO WE MEASURE NCO2 IN A 
WETTED WALL COLUMN?

Mass transfer: two-film theory \2 
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𝑵𝑵𝑪𝑪𝑪𝑪𝟐𝟐   material balances for the gas phase  

𝑁𝑁𝐺𝐺𝐼𝐼𝐼𝐼 − 𝑁𝑁𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑁𝑁𝐶𝐶𝐶𝐶2

HP: Only CO₂ is transferred between the gas and liquid phases. 

Material balance 
over the gas phase

𝑁𝑁𝐺𝐺𝐼𝐼𝐼𝐼, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∆𝑁𝑁𝐶𝐶𝐶𝐶2

𝑁𝑁𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁2 +
𝑁𝑁𝑁𝑁2 + 𝑁𝑁𝐶𝐶𝐶𝐶2

𝐼𝐼𝐼𝐼

1 −
𝑝𝑝𝐻𝐻2𝑂𝑂
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑇𝑇)
𝑝𝑝

�
𝑝𝑝𝐻𝐻2𝑂𝑂
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑇𝑇)
𝑝𝑝 �

𝑦𝑦𝐶𝐶𝐶𝐶2
𝐼𝐼𝐼𝐼 − 𝑦𝑦𝐶𝐶𝐶𝐶2

𝑂𝑂𝑂𝑂𝑂𝑂

1 − 𝑦𝑦𝐶𝐶𝐶𝐶2
𝐼𝐼𝐼𝐼 � 1 − 𝑦𝑦𝐶𝐶𝐶𝐶2

𝑂𝑂𝑂𝑂𝑂𝑂
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Overall mass transfer coefficient, KG

CO2 profile in the gas phase is expected to have a
curved or somewhat asymptotic shape (gas
phase modelled as a pfr)  log mean driving
force gives a better weighted average of the driving
forces along present along the WWC.

𝑝𝑝𝐶𝐶𝐶𝐶2
𝑏𝑏 − 𝑝𝑝𝐶𝐶𝐶𝐶2

∗
𝐿𝐿𝐿𝐿

=
𝑝𝑝𝐶𝐶𝐶𝐶2

𝐼𝐼𝐼𝐼−𝑝𝑝𝐶𝐶𝐶𝐶2
∗ − 𝑝𝑝𝐶𝐶𝐶𝐶2

𝑂𝑂𝑂𝑂𝑂𝑂−𝑝𝑝𝐶𝐶𝐶𝐶2
∗

ln
𝑝𝑝𝐶𝐶𝐶𝐶2

𝐼𝐼𝐼𝐼−𝑝𝑝𝐶𝐶𝐶𝐶2
∗

𝑝𝑝𝐶𝐶𝐶𝐶2
𝑂𝑂𝑂𝑂𝑂𝑂−𝑝𝑝𝐶𝐶𝐶𝐶2

∗

𝐾𝐾𝐺𝐺 =
𝑁𝑁𝐶𝐶𝐶𝐶2

𝑝𝑝𝐶𝐶𝐶𝐶2𝑏𝑏 − 𝑝𝑝𝐶𝐶𝐶𝐶2∗ 𝐿𝐿𝐿𝐿

𝑁𝑁𝐶𝐶𝐶𝐶2 = 𝐾𝐾𝐺𝐺 � 𝑝𝑝𝐶𝐶𝐶𝐶2
𝑏𝑏 − 𝑝𝑝𝐶𝐶𝐶𝐶2

∗

?
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Overall mass transfer coefficient, KG \2

𝑝𝑝𝐶𝐶𝐶𝐶2
IN < 𝑝𝑝𝐶𝐶𝐶𝐶2

∗ desorption
𝑝𝑝𝐶𝐶𝐶𝐶2

IN > 𝑝𝑝𝐶𝐶𝐶𝐶2
∗ absorption

rotating absorption/desorption experiments

T = 40 °C, p = 24 psig, 5m PZ, loading = 0.310 [molCO2/molAlk], total gas flowrate = 4.5 [Nl/min]
(all the same for each of the six runs).

𝑝𝑝𝐶𝐶𝐶𝐶2
∗   the CO2 flux = 0, when the 

driving force is 0

pure N2

2 � 𝑝𝑝𝐶𝐶𝐶𝐶2
∗
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1. Gas film mass transfer resistance

gas flowrate ≈ 5 Nl/min

gas flowrate ↑
1/kG ↓
∆pCO2|WWC ↓
liquid film 
stability 

↓
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2. Liquid film diffusional resistance

liquid flowrate ≈ 2 - 4 ml/s

liquid flowrate ↑
kL

0 ↑

liquid film 
stability

↓

rippling 
phenomena
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𝑝𝑝𝐶𝐶𝐶𝐶2
𝐼𝐼𝐼𝐼 not too different from 𝑝𝑝𝐶𝐶𝐶𝐶2

∗ 

𝛁𝛁𝒑𝒑𝑪𝑪𝑪𝑪𝟐𝟐
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3. Mass transfer limited regime 



CSTR PFR

change in 𝑝𝑝𝐶𝐶𝐶𝐶2  along the column ≈ 10 – 30%

0
4

EX
PE

RI
M

EN
TA

L 
C
O

N
C
ER

N
S

4. Gas phase modelling 
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5. Pressure

Max pressure 110 psig (PSV)
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Gas film mass transfer coefficient, kG
1
𝐾𝐾𝐺𝐺

= 1
𝑘𝑘𝐺𝐺

+ 1
𝑘𝑘𝐺𝐺
′ ?

Luo: A = 2.0006, B = 0.4123 Gladis: A = 3.61, B = 0.59

WWC at UT.

𝑆𝑆𝑆 = A � 𝑅𝑅𝑅𝑅 � 𝑆𝑆𝑆𝑆 �
𝑑𝑑𝐻𝐻

ℎ𝑊𝑊𝑊𝑊𝑊𝑊

B

Pacheco: A = 1.075, B = 0.85
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Liquid film mass transfer coefficient, kG’

Solvent 5m PZ solution

1
𝐾𝐾𝐺𝐺

= 1
𝑘𝑘𝐺𝐺

+ 1
𝑘𝑘𝐺𝐺
′

?
1. the extensive experimental work conducted by

Rochelle’s group demonstrated that 5m PZ solution is
the best compromise between CO2 absorption
capacity and viscosity: 5m PZ solution is 50% less
viscous than 8m PZ, which enhances heat and mass
transfer;

2. Dugas, 2009: measured the kG’ of this solvent and his data
can be used for comparison.

Why?

Experimental conditions: temperature (30 – 80 [°C]), loading (0.236, 0.310, 0.404 [mol CO2/mol Alk])

[kg CO2/kg solution] [kg PZ/kg solution]

Loading measured via TIC (Total Inorganic Carbon) + titration
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5 m PZ and 7 m MEA mass transfer rate comparison at 40 [°C].

Results

7 m MEA (Dugas, 2009) 
T \ [°C] = 40

5 m PZ (this work)
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Results \2

kG’ for 5 m PZ as a function of loading and temperature, data by this work (○) and 
Dugas, 2009 (□).

0.226

0.236

0.299

0.310
0.354

0.402

0.404
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Results \3
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correlation by Xu (Rochelle et al., 2009) 

∆ Dugas, 2009
- Hilliard, 2008   
○ this work, 2025 
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𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶2
𝑑𝑑 �1

𝑇𝑇
=
−∆𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅

−∆𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 = 75 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚

−∆𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 = 70 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚

−∆𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 = 67 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚

Results \4

0.404

0.310

0.236
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Conclusions
1. replicate data by Dugas for 5m PZ;

2. kG’ show a weak temperature dependence;

3. kG’ show a stronger loading dependence;

4. the measured kG’ [mol/m2/s/Pa] at pCO2* ≈ 0.1 kPa was 3.52E-06 for 5 m PZ, compared to
1.40E-06 for 7 m MEA.

Outlook
Apply the guidelines to characterize a new generation solvent in a nearly built WWC available at
the Eni S.p.A. laboratories in San Donato Milanese, Milan, Italy.
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