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Why do we want to measure the reaction rate of
CO, absorption? And why in a WWC?
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Figure 7.1 Liquid-Phase Mass Transfer Coefficients for Various Types of Equipment
(Astarita et al., 1983; Fair, J., 1987)



Total contact area gas OUT
= 39 cmz I — oil OUT
18 <213
glassi 4 T
N o
dimensions in cm \ i
hollow __ E
stainless |
steel tube v
oil IN I ] L gas IN

lig OUT ~—  JigIN



[
l el pag - 2000 = [ [ ]
|

vent

IR detector

dessicant

% 0o |—
¥+

WWC flowsheet

solvent
tank

1.2 L

e

condenser

sample
port

MFCI— N,

.

MFC J~C02

MFC

water
bath

—

oil bath

water

saturator




Mass transfer: two-film theory

The mass transfer of CO, from the gas phase into the liquid phase can be described using the two-
film theory (Lewis et al., 1924).

G film Lfilm
Pgo
' Nco, = ki - ([CO2]; —[CO]p)
\ = kg - (Péoz - PEOZ)
Peo, CO,]
211
Ngoz = k¢ - (Plgoz — péOZ)
_________ S A . (€O,
G-L interface

Nco, = K¢ - (Plgoz — PZ‘OZ)




Mass transfer: two-film theory \2

At steady-state, the fluxes across each mass transfer films are the same (NCGO2 = Néoz = N¢o,) and
the mass transfer coefficients can be written in the series resistance form:

In a typical WWC experiment the steady-state N 5, is measured and by defining the appropriate
driving force along the WWC, it is possible to evaluate the K5 parameter.

HOW DO WE MEASURE N, IN A
WETTED WALL COLUMN?



N¢o, = material balances for the gas phase

NOYT, Nipore HP: Only CO, is transferred between the gas and liquid phases.
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Overall mass transfer coefficient, K;

CO, profile in the gas phase is expected to have a

Neo =KG-(pb _p: ) curved or somewhat asymptotic shape _(gas
2 €O,  FCO; phase modelled as a pfr) €-> log mean driving
\ 2 force gives a better weighted average of the driving

) forces along present along the WWC.
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Overall mass transfer coefficient, K;\2
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T =40 °C, p = 24 psig, 5m PZ, loading = 0.310 [molCO,/mol,,], total gas flowrate = 4.5 [NI/min]
(all the same for each of the six runs).
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EXPERIMENTAL CONCERNS

1. Gas film mass transfer resistance
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EXPERIMENTAL CONCERNS

2. Liquid film diffusional resistance
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EXPERIMENTAL CONCERNS

3. Mass transfer limited regime
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EXPERIMENTAL CONCERNS

4. Gas phase modelling
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EXPERIMENTAL CONCERNS

5. Pressure

jacketed bubbling saturator

p = 20 psig

Max pressure 2> 110 psig (PSV)



Gas film mass transfer coefficient, kg

B
dy

Sh=A-(Re-Sc- )
hwwc

Luo: A=2.0006, B p* 3.61, B =0.59

WWC at UT.

Pacheco: A=1.075,B=0.85
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Liquid film mass transfer coefficient, kg’ 1
K¢ kg ~ 2

1. the extensive experimental work conducted by

Solvent = 5m PZ solution Rochelle’s group demonstrated that Sm PZ solution is
the best compromise between CO, absorption
f capacity and viscosity: 5m PZ solution is 50% less
viscous than 8m PZ, which enhances heat and mass
Why? transfer;

2. Dugas, 2009: measured the kg’ of this solvent and his data
can be used for comparison.

Experimental conditions: temperature (30 — 80 [°C]), loading (0.236, 0.310, 0.404 [mol CO,/mol ,,])

Loading measured via TIC (Total Inorganic Carbon) + titration

~ \

[kg COZ/kg solution] [kg PZ/kg solution] 17



Results

k' [mol/Pa/m2/s]
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5 m PZ and 7 m MEA mass transfer rate comparison at 40 [°C].

18



Results \2
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Results \3
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Results \4

CO, partial pressure [Pa]
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replicate data by Dugas for 5m PZ;
kg’ show a weak temperature dependence;
ks’ show a stronger loading dependence;

the measured kg’ [mol/m?/s/Pa] at pco,* = 0.1 kPa was 3.52E-06 for 5 m PZ, compared to
1.40E-06 for 7 m MEA.

Apply the guidelines to characterize a new generation solvent in a nearly built WWC available at
the Eni S.p.A. laboratories in San Donato Milanese, Milan, Italy.
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