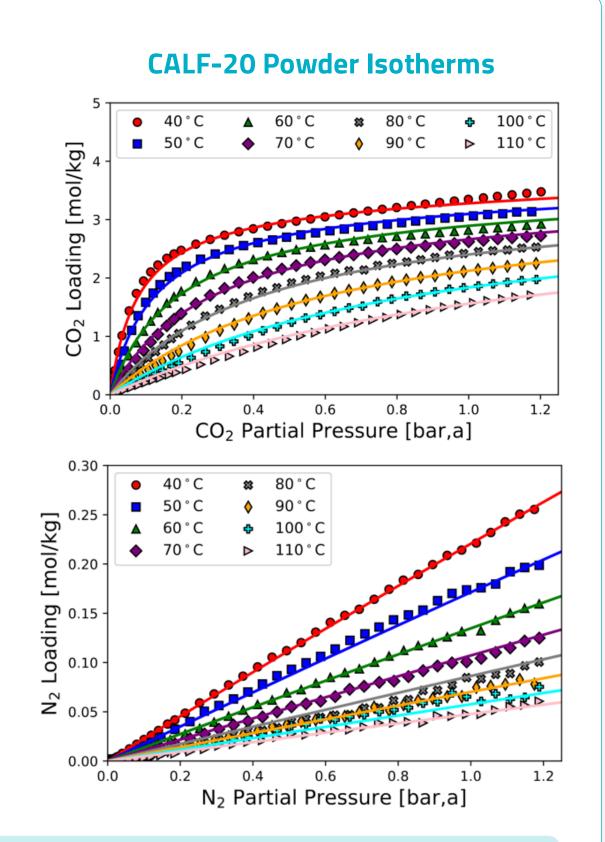
Svante

Pilot-scale Demonstration of a Laminate-Based CALF-20 Rapid Cycle Pressure-Vacuum Swing Adsorption Process for Carbon Capture

Nicholas Stiles Wilkins^{1*}, David Murray McKinnon¹, Chinmay Baliga¹, Tai Tran Thanh Nguyen¹, <u>Bérénice Moroy¹, Ian, Xu¹, Xilan Lin¹, Onder Tulpar¹,</u> Nigel Wheeler¹, Victor Tran², Alireza Lotfollahzade Moghaddam³, Desmond Cronin², Sabereh Rezaei¹, and Andrew Liu^{1*}

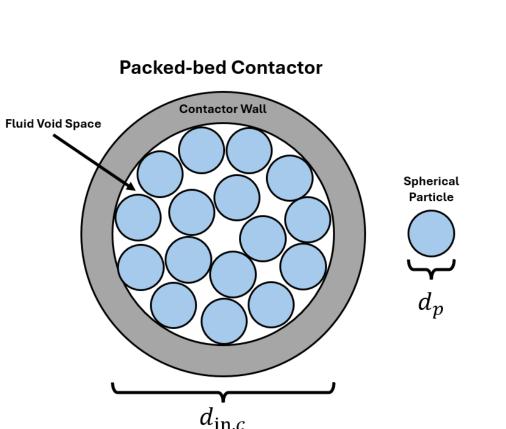

¹Department of Carbon Capture Process Development, ²Department of Product Delivery, ³Department of Adsorbent Characterization

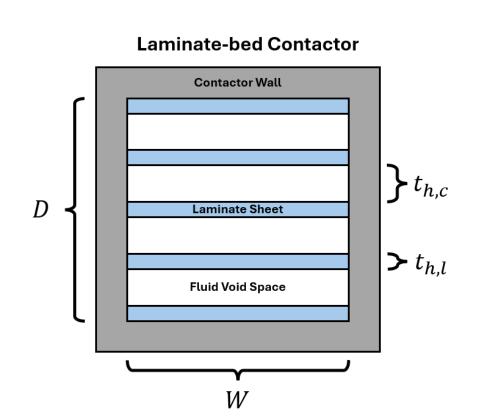
*For whom correspondence should be addressed to: nwilkins@svanteinc.com and/or aliu@svanteinc.com

Introduction

Pressure-Vacuum Swing Adsorption as a Possible Solution to **Small-Scale Emission Sources**

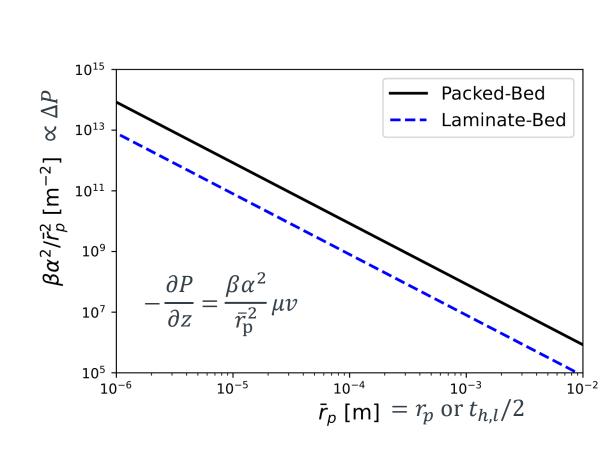
- Adsorptive processes are a low-energy carbon capture separation alternative to liquid-amine processes
- Svante utilizes the Rapid Cycle Temperature Swing Adsorption (RCTSA) process¹, a temperature-concentration swing adsorption process using CALF-20^{2,3} (a steam stable metal-organic framework) for point source capture
- Pressure-vacuum swing adsorption (PVSA) is not viable for large-scale operation (unlike RCTSA) due to the large plant footprint required⁴. However, several smaller-scale CO₂ emitters/processes may be good PVSA candidates
- This study aims to evaluate the benefits of structured laminate adsorbent beds (over packed-beds) in smallerscale (≈<100 tpd) rapid cycle PVSA processes
- Unary adsorption equilibrium data for CO₂ and N₂ on CALF-20 is favorable for both RCTSA and PVSA processes




Objectives: Demonstrate laminate-bed capability in PVSA processes & determine where it may outperform the packed-bed contactor

Laminate- & Packed-Bed Contactors

Geometry of the Two Contactors


- Considered a packed-bed in a cylindrical column and a laminatebed in a square column³
- Packed-bed has a bed voidage (ϵ) of 0.4 & the laminate-bed has $\epsilon = 0.5^3$
- Characteristic radiuses $(\bar{r}_{\rm p})$ of the contactors are: particle radius (r_p) & half laminate thickness $(t_{h,l}/2)$

Pressure-Drop (fixed v)

- The estimated pressure-drop $\left(\frac{\partial P}{\partial z}\right)$ of the two contactor types always favors the laminate bed (at fixed characteristic radius, \bar{r}_{p})
- $\beta \alpha^2$ is unique for each contactor type: $\frac{150}{4} \left(\frac{1-\epsilon}{\epsilon}\right)^2 \& \frac{32}{4}$ for the packedbed and the laminate-bed, respectively
- This allows the laminate-bed to operate at higher interstitial velocities while experiencing an equivalent pressure-drop to the packed-bed

Laminate-Bed Process Experiments

Overview

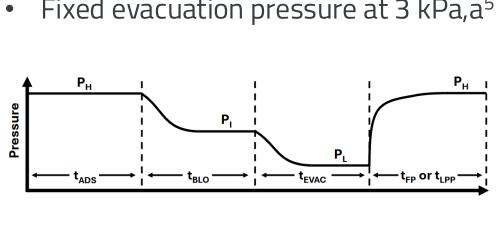
- Process experiments at a varied inlet composition (8, 12, 16 mol% CO₂ in N₂), adsorption pressure, blowdown pressure, inlet flowrate, and cycle step times were performed to determine optimal laminate-bed process performance
- Laminate-beds perform as expected
- Multiple parametric studies done to show observed/expected trends

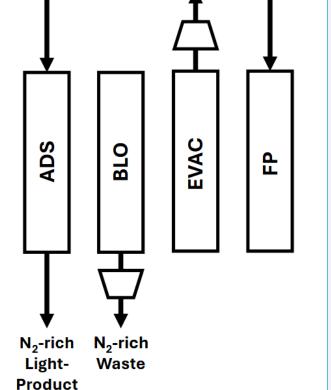
Experimental Optimization Results

to the right (all feed compositions)

• Optimal Pr found at $t_{\rm cvcle} \approx 80-90 \, {\rm s}$

• Higher inlet y_{CO_2} promoted $\uparrow \text{Rec \& } \uparrow \text{Pr}$


Best performing operation is summarized in the table


• Allowable productivity is $\approx 1.9x$ greater than what is

reported in the literature⁶ (≈ 2.4 tpd m⁻³ at 15 mol%)

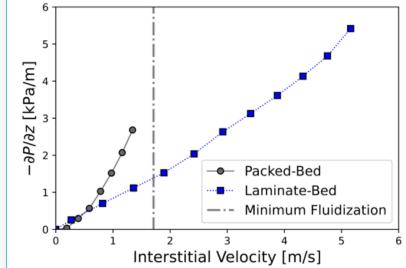
Basic 4-Step PVSA Cycle

- One of the simplest PVSA cycles⁵ that can effectively separate CO₂ from N₂
- Cycle and pressure-swing diagrams are given around this text
- Fixed evacuation pressure at 3 kPa,a⁵

CO₂ Flue Gas

Product (CO₂/N₂)

Optimal Results for all Feed Compositions

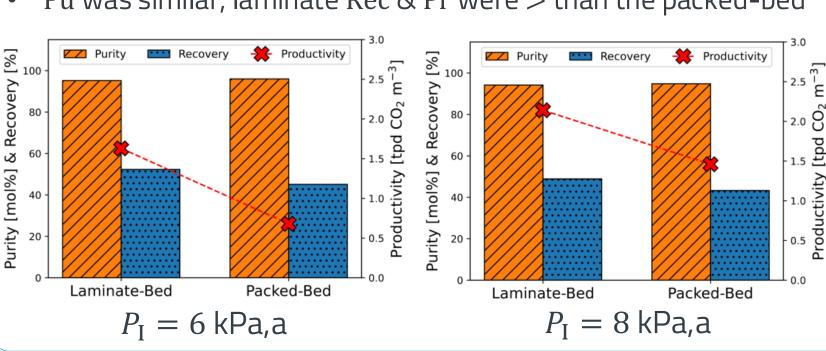

yco₂ [mol%]	Pu [mol%]	Rec [%]	Pr [tpd m ⁻³]
16	94.9	72.8	4.65
12	94.6	65.6	3.45
8	95.2	55.0	1.89

Pu = Purity, Rec = Recovery, Pr = Productivity

Comparison of Laminate- & Packed-Bed Experiments

Overview

This section details the comparison of two equivalent contactors (laminate-bed & packed-bed) manufactured at Svante. Both are 1.0 m tall and are \approx 4 cm in diameter. Experimental and numerical tests were conducted & discussed below.


Pressure-Drop Comparison Packed-bed & laminate-bed pressure-drops measured

 Laminate bed has a much lower resistance to flow & can reach much larger velocities

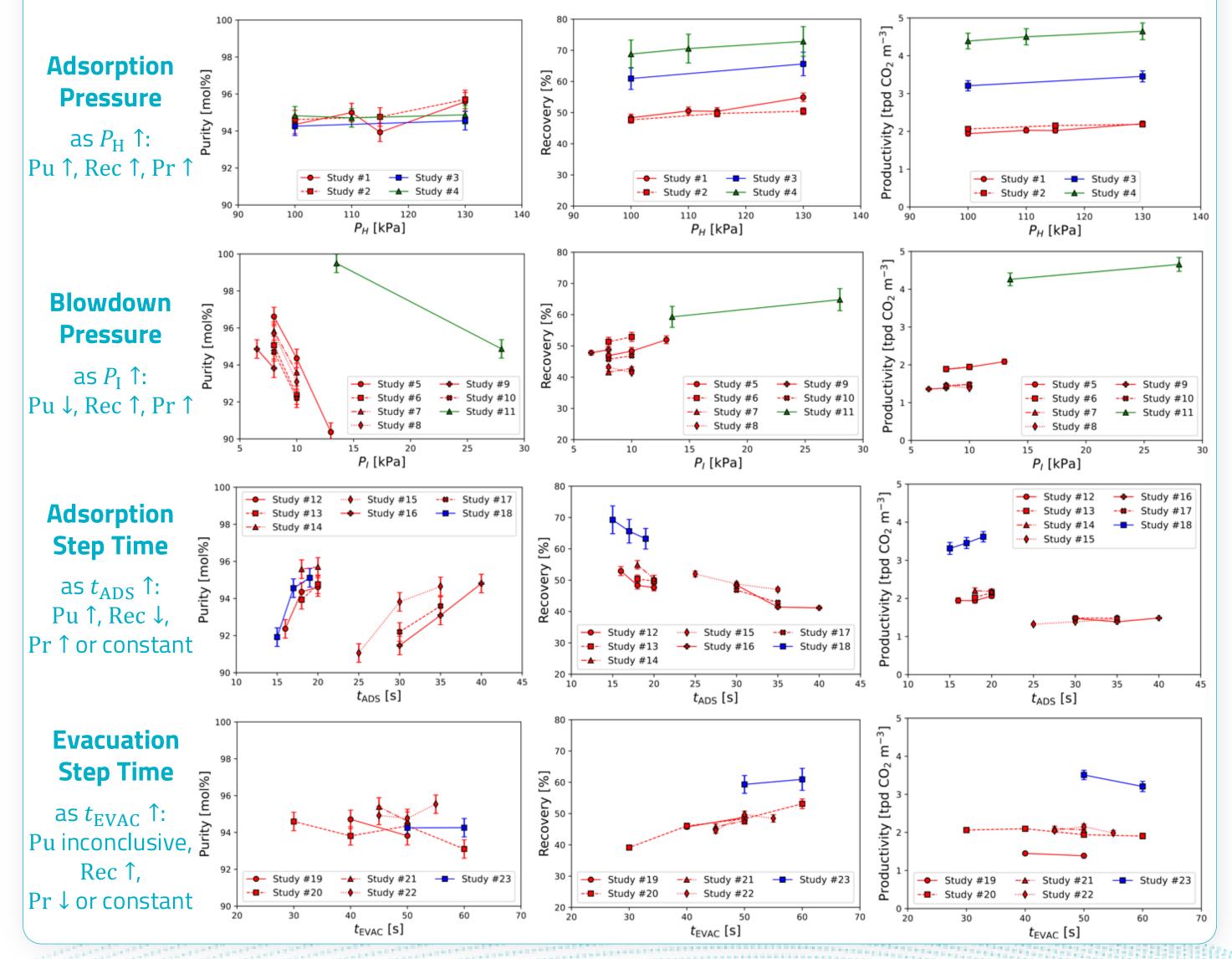
Laminate optimization is still running! CO₂ Recovery [%]

Process Performance at an Across an Equivalent Pressure-Swing

- Experimental process tests run for: $P_{\rm H}=101$ kPa,a, $P_{\rm L}=3$ kPa,a, and $P_{\rm I}$ = to either 6 (left) or 8 (right) kPa,a
- Pu was similar, laminate Rec & Pr were > than the packed-bed

Overall Process Results Both experimental and numerical process optimizations

were performed. Key findings:


- Pu is the same for both contactors
- Rec is > for the laminate-bed than the packed-bed by approximately 5% (also observed in simulations)
- Pr is > for the laminate-bed than the packed-bed
- Pr is > in numerical simulations (above) by at least ≈ 1.5-2.0x (preliminary: optimizations still running)

Ontimal Experimental Results for P. = 101 kPa a

optimal Experimental Results for PH - 101 KPa,a					
Contactor	y _{co₂} [mol%]	Pu [mol%]	Rec [%]	Pr [tpd m ⁻³]	
Laminate	8	95.7	48.0	2.16	
Packed	8	94.8	43.4	1.46	

Experimental Parametric Study

- Several experiments were for a similar set of operating conditions with one operating parameter changed
- Parametric study summarized below with their effects on process performance (Pu, Rec, Pr)
- 8, 12, and 16 mol% CO₂ feeds are denoted by: red, blue and green markers, respectively

Conclusions

This work presented a pilot-scale demonstration of a rapid-cycle PVSA carbon capture process using a CALF-20 laminatebed contactor. This process is proposed for smaller-scale CO₂ emitters (<100 tpd CO₂) as PVSA is not suitable for largescale (point-source) processes; we recommend the RCTSA process for large scale operation. Its performance was compared with an equivalent packed-bed. Both contactors were manufactured at Svante Technologies Inc. in Burnaby (BC), Canada. Key findings are summarized below:

- A theoretical study using literature correlations was performed to determine which regions produced better pressuredrop for the laminate-bed and the packed-bed. The laminate-bed always had a lower pressure-drop at a shared $\bar{r}_{\rm p}$.
- 8, 12, and 16 mol% CO₂ feeds (dry, balance N₂) were optimized experimentally for the laminate-bed in the basic 4-step cycle. Optimal performance was detailed in the table to the left. Higher compositions performed better than lower compositions in allowable recovery and productivity (at a fixed purity). Different parameter operations were highlighted.
- Equivalent dimension contactors were tested experimentally for both the packed and laminate-beds. The laminate-bed offered a better pressure-drop and could produce better recoveries and productivities (up to 1.9x better) than the packed-bed. This was validated with numerical optimizations and packed-bed results in the literature⁶.

The next steps of this study are to: study advanced cycles under humid conditions using CALF-20 laminate contactors.

Acknowledgements & References

Authors highly appreciate support and collaboration of our colleagues at Svante Technologies Inc., including: the Carbon Capture Process Development, Product Delivery, Adsorbent Characterization, Technology Development, Product Management, and Marketing Departments.

- 1. Rezaei, Sabereh, Andrew Liu, and Pierre Hovington. "Emerging technologies in post-combustion carbon dioxide capture & removal." Catalysis Today (2023): 11428
- Lin, Jian-Bin, et al. "A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture." Science 374.6574 (2021): 1464-1469.
- 3. Peh, Shing Bo, et al. "Direct contact TSA cycle based on a hydrophobic MOF sorbent for post-combustion CO₂ capture from wet flue gas." Chemical Engineering Science 301 (2025): 120744.
- Subraveti Gokul, et al. How much can novel solid sorbents reduce the cost of post-combustion CO₂ capture? A techno-economic investigation on the cost limits of pressure-vacuum swing adsorption. Applied Energy. 2022 Jan 15;306:117955.
- Haghpanah, Reza, et al. "Cycle synthesis and optimization of a VSA process for postcombustion CO₂ capture." AIChE Journal 59.12 (2013): 4735-4748.
- Nguyen, Tai T. T., George K. H. Shimizu, and Arvind Rajendran. "CO₂/N₂ separation by vacuum swing adsorption using a metal-organic framework, CALF-20: Multiobjective optimization and experimental validation." Chemical Engineering Journal 452 (2023): 139550.

