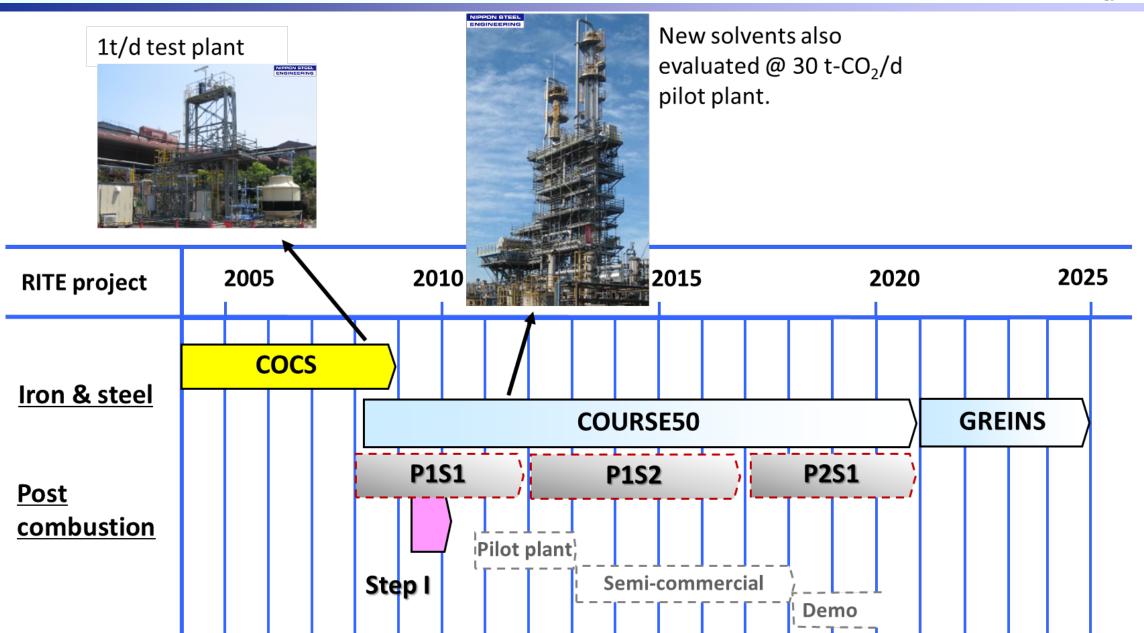


Results of RITE's Novel Water-lean Solvent for Energy Efficient CO₂ Capture

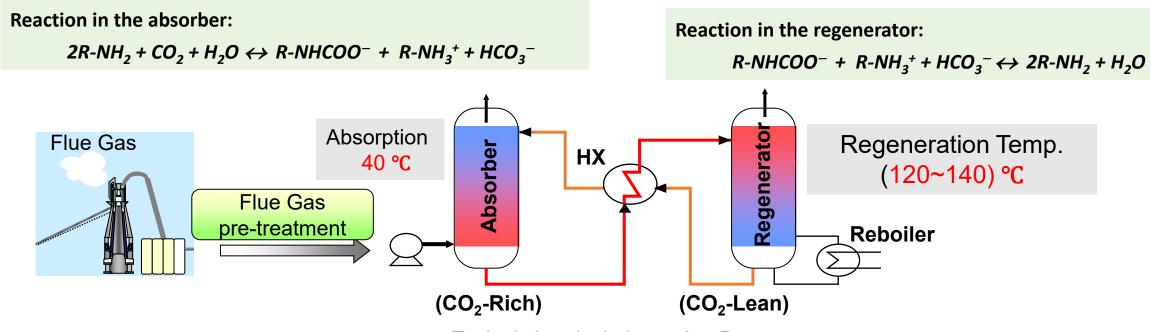
Firoz A. Chowdhury

Research Institute of Innovative Technology for the Earth (RITE) 9-2 Kizugawadai, Kizugawa-shi, Kyoto, Japan (URL: http://www.rite.or.jp)

Marseille, France 16 – 18 September, 2025.


Today's Presentation

- 1. An introduction
- 2. Water-lean solvent development plan
- 3. Water-lean solvent selection methodology
- 4. Selected water-lean solvent optimization
- 5. Research summary


RITE Liquid Solvent Development Projects

Introduction

Typical chemical absorption Process

(Amine-CO₂-H₂O) vs (Amine-CO₂-ROH) solvent

Present Chemical Absorbent	Amine based aqueous solvent system	High specific heat	High evaporation latent heat	Abs Reg. Temperature (40~120)°C
Alternative Chemical Absorbent	Amine based water-lean solvent system	Low specific heat	Low evaporation latent heat	Abs Reg. Temperature (40∼90)°C

Introduction

Reaction with aqueous amine solution

Carbamate generation

$$2R^{1}R^{2}NH + CO_{2} \longrightarrow R^{1}R^{2}NCOO + R^{1}R^{2}NH_{2}$$

$$absorb CO_{2} (1:2) ratio$$

$$R^{1}R^{2}NCOO + R^{1}R^{2}NH_{2}$$

$$Regeneration$$

$$@ \sim 120 °C$$

Bicarbonate generation

$$2R^{1}R^{2}R^{3}N + CO_{2} + H_{2}O$$
 \longrightarrow $2R^{1}R^{2}R^{3}N + H_{2}O_{3}$ \longrightarrow $2R^{1}R^{3}N + H_{2}O_{3}$ \longrightarrow $2R^{1}R^{$

Reaction with non-aqueous amine solution

Carbamate generation

HO NH₃ OH + IN R H^{+ transfer}

Crbamate-Ammonium Salt

Alkylcarbonate generation

Aqueous amine scrubbing processes

- ➤ High energy consumption for solvent regeneration.
- ➤ Environmental and health concerns due to volatile amine loss.
- Corrosion problems.

Amine

Non-Aqueous amine scrubbing processes

- ➤ Lower specific heat and latent heat of solvent could be reduced reboiler heat duties.
- Primary challenge is the strong and non-linear increase in viscosity that occurs with CO₂ uptake.

Water-lean solvent development plan

R & D focuses:

- ➤ Material that offer lower viscosity.
- ➤Increasing CO₂ rich-lean window.
- ➤ CO₂ regeneration at low temperature.

Other important features

- > fast absorption kinetics
- ➤ high CO₂ cyclic capacity
- > low heat requirements for regeneration

Basis (absorb CO₂ 1 : 1 ratio)

Carbamate formation (*R-NHCOO*⁻):

$$2R-NH_2 + CO_2 + Im \leftrightarrow R-NHCOO^- + Im^+ + R-NH_2$$
(Carbamate)

Alkylcarbonate formation (RCO_3^-):

$$R-NH_2 + CO_2 + R-OH \leftrightarrow RCO_3^- + R-NH_3^+$$
(Alkylcarbonate)

Investigated amine absorbents and alcohol solvents

- ➤ This work investigated amine absorbents (12) and alcohol solvents (4) short name and their chemical structures
- Monoethanol amine (MEA) used as a reference

R & D Activities

1st step

Laboratory experiments

- Screening test
- Calorimetry
- Vapor-liquid equilibrium
- Spectroscopy

Computational chemistry

- To understand the absorption chemistry for the selection and formulation of amines 3rd step

Evaluation of engineering performance

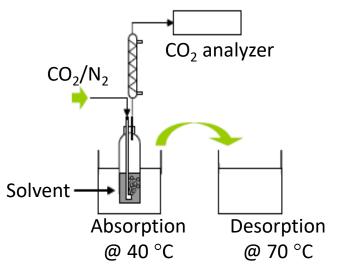
- Corrosion
- Degradation

....

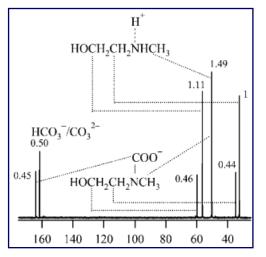
2nd step

Plant tests

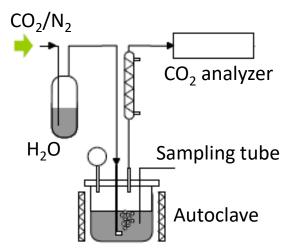
- $-50 \text{ kg CO}_2/d$
- $-1 t CO_2/d$
- $-30 \text{ t CO}_2/\text{d}$


Process simulation

Laboratory Scale Experiments

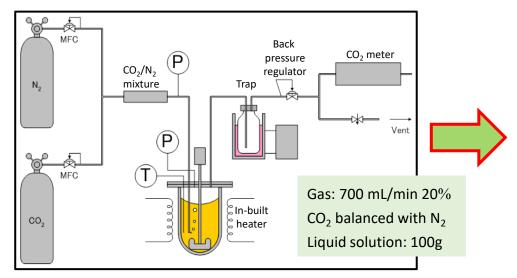


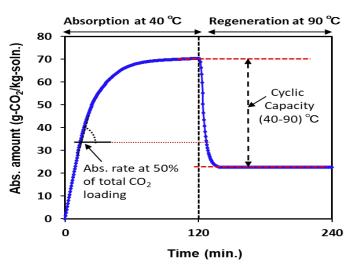
Screening test


¹³C NMR

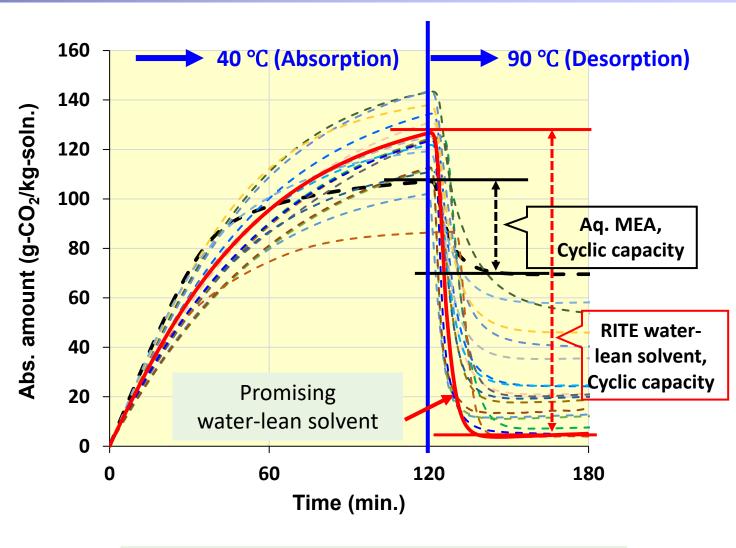
Calorimetry

Vapor-liquid equilibrium

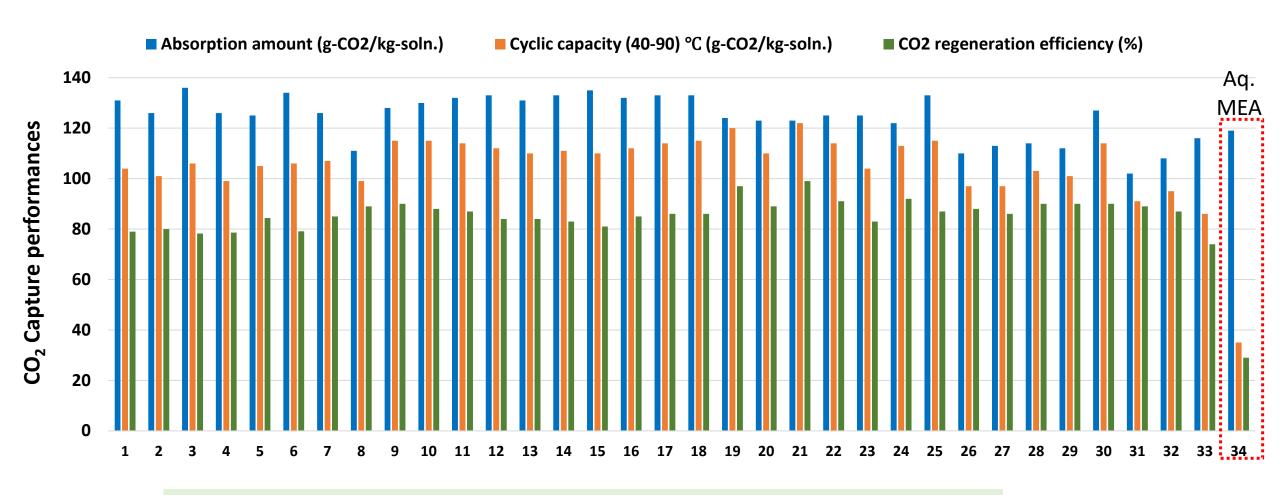




Gas Scrubbing Test

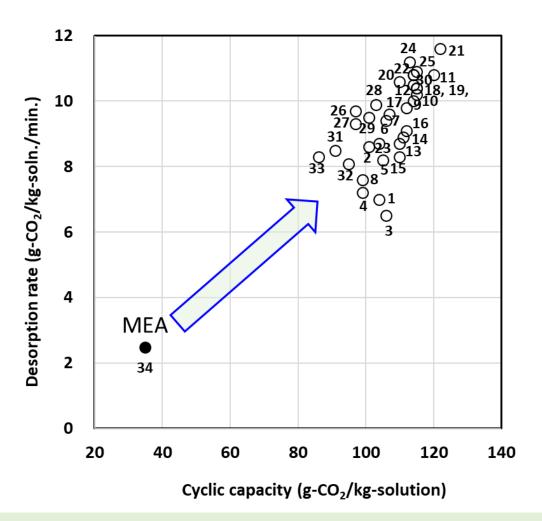


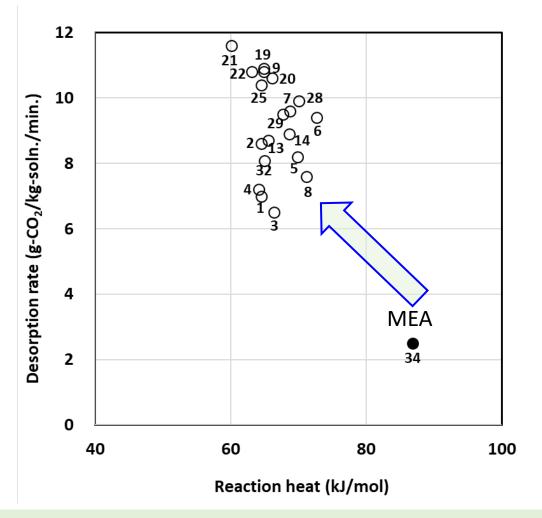
Gas scrubbing test apparatus


Typical example of a gas scrubbing test

Points of focus: High absorption/desorption rate, low reaction heat, high CO₂ recovery capacity

Screening Test Results





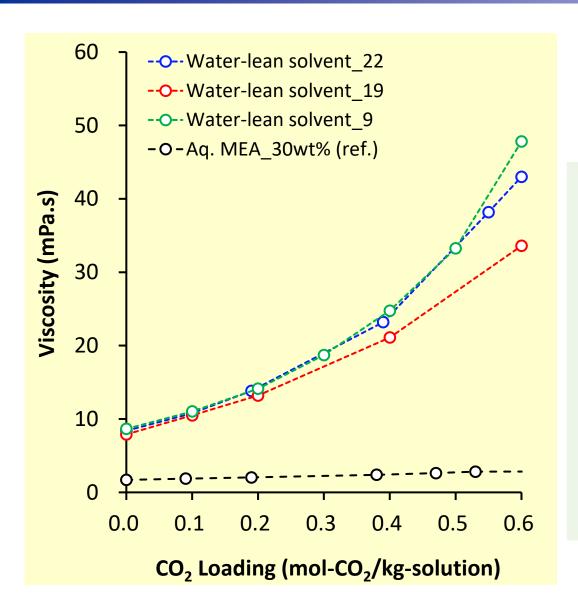
- \triangleright Absorption amount (g-CO₂/kg-soln.) = 120 min. CO₂ loading at 40 °C
- \triangleright Cyclic capacity (g-CO₂/kg-soln.) = difference between CO₂ loadings at (40 90)°C
- \triangleright CO₂ regeneration efficiency = (Cyclic capacity/Absorption amount) x100%

Water-lean solvent performances

- \triangleright Succeeded in increasing cyclic capacity by increasing desorption rate \Rightarrow Contributes to improving CO₂ recovery capacity.
- ➤ Succeeded in reducing reaction heat while increasing desorption rate → Contributes to reducing thermal energy

Water-lean solvent performances

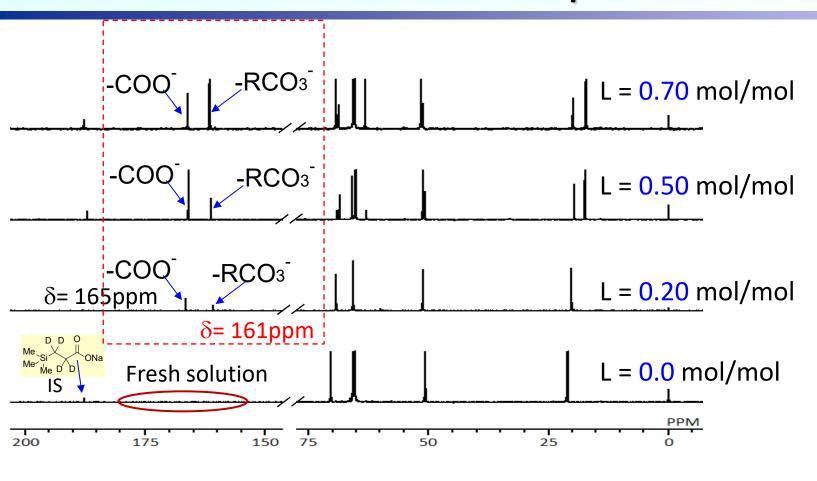
Selected three water-lean solvent performances


Selected Water-lean Solvent	Absorption ^a / Desorption ^b Rate (g/kg/min.)	CO ₂ Loading ^c @ 40°C (g/kg)	Cyclic Capacity ^d @ (40-90) °C (g/kg)	CO ₂ Recovery ^e (%)	Heat of Absorption (kJ/mol-CO ₂)	Specific Heat ^g (J/gK)
Water-lean solvent_22	1.35/10.8	125	114	91	63.1	3.1
Water-lean solvent_19	1.40/10.8	124	120	97	64.9	3.0
Water-lean solvent_9	1.32/10.6	123	110	89	66.1	2.9
Aq. MEA_30wt% (Ref.)	2.38/2.38	119	35	29	86.9	3.75

^aCO₂ absorption rates were calculated at 50% of the 120-min CO₂ loading at 40 °C and ^bdesorption rates were calculated at the average of the initial 10-min CO₂ loading at 90 °C; ^c120-min CO₂ loading at 40 °C; ^ddifference between CO₂ loadings at 40 and 90 °C;

 e (c/b) \times 100%; f Heats of reaction were measured at 40 $^\circ$ C and atmospheric pressure; f Specific heats of all water-lean solvent and aq. 30wt% MEA solutions were measured at 40 $^\circ$ C and atmospheric pressure.

Viscosity: Selected Water-Lean Solvent



- ➤ All water-lean solutions viscosity as a function of CO₂ loading was measured at 40 °C.
- ➤ As expected, the viscosity increases with increasing CO₂-loading.
- This work selected water-lean solutions can keep lower viscosity if we compared to global NAS/water-lean solvents.
- ➤ All CO₂ loaded water-lean solutions showed higher viscosity in comparison to aq. 30wt% MEA.

Quantitative ¹³C-NMR Experiment

Emphasis on

*RCO*₃⁻ >> *R-NHCOO*⁻

Carbamate formation (minor):

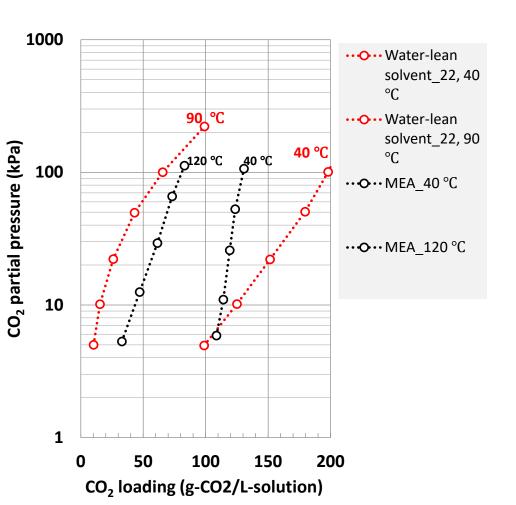
 $2R-NH_2 + CO_2 \leftrightarrow R-NHCOO^- + R-NH_3^+$ (Carbamate)

Alkyl carbonate formation (major):

 $R-NH_2 + CO_2 + R-OH \leftrightarrow RCO_3^- + R-NH_3^+$

(Alkylcarbonate)

Validation of ¹³C-NMR analysis


CO ₂ Loading mol-CO ₂ /mol-amine		Anion ratio 13C NMR		
TOC	¹³ C NMR	-COO -	-RCO ₃ -	
0.20	0.20	0.90	0.10	
0.50	0.49	0.79	0.21	
0.70	0.69	0.42	0.58	

Conditions: Quantitative ¹³C NMR

¹³C-NMR: inverse-gated decoupling (90 °C pulse, 60 s delay, 600 scans); Internal Standard: (CH₃)₃Si(CD₂)₂COONa in D₂O; Temp: 296-297 K

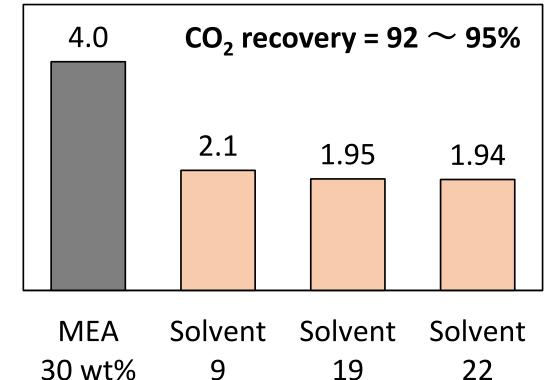
VLE CO₂ Solubility: Water-lean Solvent

Water-lean Solvent	_22 vs aqueous N	ΛEA
--------------------	------------------	-----

	40 °C		90 °C		Cyclic	
Tested Sample	P _{CO2} [kPa]	CO ₂ rich [g-CO ₂ / L-soln.]	P _{CO2} [kPa]	CO ₂ lean [g-CO ₂ / L-soln.]	capacity (40-90) °C [g-CO ₂ / L-soln.]	
Water lean	13	132.2	13	18.3	113.9	
	20	148.3	20	24.4	123.9	
solvent_22	100	197.8	100	65.6	132.3	
Aqueous	13	114.7	13	71.6	43.1	
MEA_30wt%	20	118.2	20	78.7	39.5	
(Reference)	100	134.2	100	83.1	51.1	

▶ Under equilibrium condition at any CO₂ partial pressure and temperature this work water-lean solvent remarkably increased cyclic
 CO₂ capacity compared to reference aqueous MEA solution.

Evaluation at 5kg_{-co2}/d bench plant



CAT-LAB

CAT: Chemical Absorption Test plant

Regeneration energy [GJ/t- CO_2]

CAT-LAB test conditions and equipment specifications

Gas: Blast furnace gas (20%_{CO2})

CO₂ capture capacity: 5 kg_{-CO2} / d

Absorber [mm]: 1,500H x 50φ

Stripper [mm]: 1,200mm x 50φ

Gas flow rate [L/min.] = 10

Column filling: Dixon packing (6 mm)

This work water-lean solvents significantly lower regeneration energies than conventional aqueous MEA.

Research Summary

- RITE developed new water-lean solvents to establish a low-cost CO₂ capture system for integrated steelworks.
- Amines for new water-lean solvents were selected based on experimental and computational methods, and formulated by optimizing concentration, blending, etc.
- New solvents showed excellent performance. The regeneration energies of the solvents are $\sim 2.0 \, \text{GJ/t-CO}_2$.

Acknowledgment: This work was financially supported by the COURSE50 project (JPNP13012) and GREINS project (JPNP21019) founded by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

