Résumé of the 10-year joint development program of BASF, Linde and RWE Generation at the post-combustion capture pilot plant at Niederaussem –

OASE[®] blue: 2.5 GJ/t_{CO2}, <300 $g_{solvent}/t_{CO2}$, effective emission control

The holistic approach of the development program

THE LINDE GROUP

10 years of development

Solvent screening, Mini Plant testing

Construction pilot plant at Niederaussem MEA benchmark and new solvent testing

OASE[®] blue long-term testing, emission reduction

OASE[®] blue process optimisation, mitigation of aerosol-based emissions, reclaiming test

D - BASF

Post-combustion capture pilot plant at Niederaussem

- Flue gas: 1,550 Nm³/h; CO₂ product: 7.2 t CO₂/day; capture rate 90%
- Commissioning and start-up 2009, availability ~97%
- 285 online measuring points and 18 material testing points

OASE[®] blue - testing for >55,000 hours under real power plant conditions

OASE[®] blue - 2.5 GJ/t_{CO2} solvent performance and advanced process concept

THE LINDE GROUP

🗆 • BASF

We create chemistry

E12

I P Flas

E19

4000 Advanced process concept 3800 **Specific Energy Demand [MJ/tco2]** 33400 3200 3000 2800 2400 2400 MEA Make-Up wate -20% Make-Un Amir Dry Bed OASE[®] blue DCC Σ \bigcirc E16 **Circulation rate**

Basic process design

 \Rightarrow Reduction in circulation rate and energy (by 20%) (simple configuration): 2.8 GJ/t_{CO2}

Advanced process concept

 \Rightarrow Reduction of specific energy demand by around 0.3 GJ/t_{CO2}: 2.5 GJ/t_{CO2}

⇒ Low additional CAPEX

OASE[®] blue - < 300 g/t_{CO2} solvent consumption and high degradation stability

THE LINDE GROUP

🗆 • BASF

We create chemistry

⇒ Low solvent losses and degradation

⇒ Reclaiming: The ion exchanger is effectively removing heat stable salts

Aerosol formation – bimodal particle size distribution of solid aerosol nuclei

THE LINDE GROUP

🗆 • BASF

Investigation of aerosol formation and development of effective countermeasures

THE LINDE GROUP

- BASF

Optimal emission reduction measures: "Pre-treatment" and "Dry Bed"

THE LINDE GROUP

BASF

Optimal emission reduction measures: "Pre-treatment" and "Dry Bed"

THE LINDE GROUP

Improved packing for scale-up

Implementation of new high performance packing

Reduction in:

- → Pressure drop by up to 50%
- → Absorber diameter up to 14%

1,100 MW_{el} Plant:

Up to 2 m reduction in diameter

Equipment specific material selection

THE LINDE GROUP

- BASF

Scale-up risks handled

v

v

v

v

V

V

V

v

v

v

Low

scale-up risk

THE LINDE GROUP

U = BASF

Solvent specific's tested

- performance (specific energy consumption, recovery rate, loading, circulation rate)
- impact from real flue gas (foaming, impurities)
- degradation, O_2 stability, emissions \rightarrow solvent losses
- long term behavior/stability

Equipment specific's tested

- packings (height, pressure drop)
- emission control system (design, performance optimization)
- heat exchanger type and performance
- materials of construction (equipment, piping, seals, gaskets)

at was in the

Design verification finalized

- verification of process simulation tools
- · consideration of design ranges based on test results
- Design tools for scale-up developed

Commercial designs are developed

- Customized designs for different applications are developed
 - Feed gas sources from coal and gas fired power plants and from steam reformer
 - Absorber design depending on flue gas flow (2 parallel trains if required)
 - Material concept depending on flue gas source
 - Designs available for water cooling or air cooling application

Summary and conclusions

- BASF, RWE and Linde have jointly developed an energy efficient process for PCC from coal fired power plants.
- An outstanding test period of >55.000 hours was reached for OASE® blue solvent.
- Process and solvent are applicable for a wide range of different flue gas sources.
- Emission control for environment protection and low amine losses.
- New approaches for installations with substantial Capex reduction tested.

\rightarrow PCC process is commercial available

- for delivery of large amounts of CO_2 for EOR and storage (> 1000 MTD)
- as CO_2 source for chemical use in small and midsize scale (200 2000 MTD)
- as CO_2 source for CO_2 food grade in smaller scale (< 500 MTD)

THE LINDE GROUP

Authors

RWE: Peter Moser, Georg Wiechers and Knut Stahl

Linde: Torsten Stoffregen

Acknowledgements

BASF: Gerald Vorberg and Gustavo Lozano

This presentation is based on work supported by the BMWi under sponsorship codes: 0327793 A to I for RWE Power, Linde and BASF (PCC Niederaussem)

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag