

SO₂ Influence on MEA Degradation in CO₂ Capture Absorption-Regeneration Process: Competition with Oxidative Degradation

World Trade Centre – Marseille, 17th of September 2025

Post-Combustion Capture Conference 8th, IEAGHG

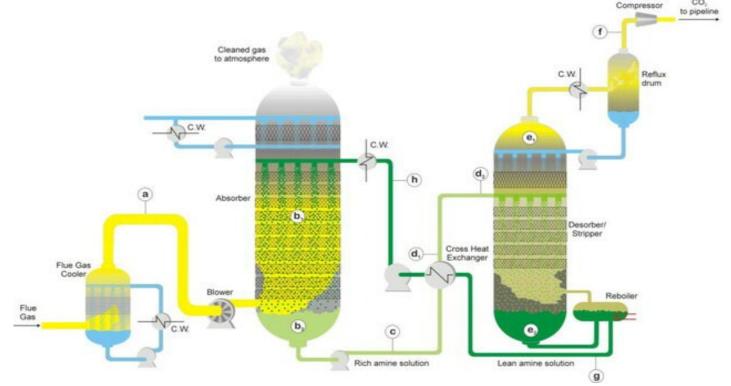
Loris Baggio* Prof. Grégoire Léonard

Contents

- HECO2 SATURN Project
- Introduction
 - Liquid amine absorption-regeneration for CO₂ capture
 - Process description & reactions involved
- Degradation of Amine Solvent
 - Oxidative degradation
 - SO₂ reactions in the system
- Degradation Test Rig
- Results
- Further Work

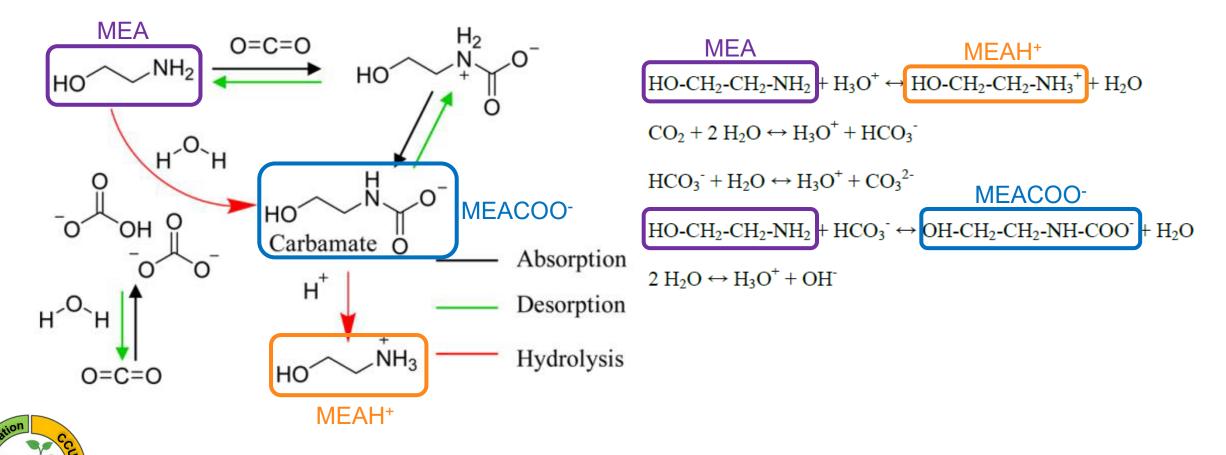
HECO2 – 5 – SATURN project

- Project financed by NextGenerationEU through Walloon region
- ▶ Part of 'HECO2: towards decarbonising Wallonia's heavy industry'
 - Axis 5: Carbon Capture Utilization & Storage (CCUS)
 - Bring together Universities, Research Centres & Industrial Partners
 - ULiège, UMONS, CRM, VOCSens, AGC, APERAM, CARMEUSE, PRAYON
 - ► Glass, Steel, Lime & Chemicals sectors
 - Post-combustion CO₂ capture process: development and optimization
 - Two different technologies are studied with two pilots
 - Cryogenic & Chemical Absorption-Regeneration

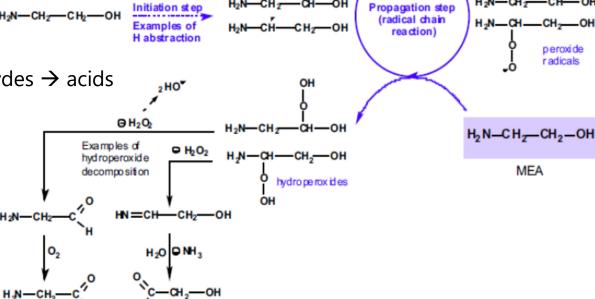


Introduction

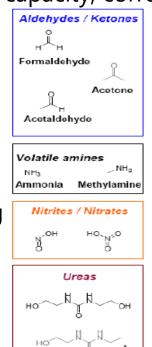
- ► For 'hard-to-abate' emissions → Post-Combustion capture is one of the solutions
 - Wide range of technologies (cryogenic, membrane, adsorption, absorption,...)
 - ► Liquid amine absorption—regeneration process = widespread and more mature (TRL ++)

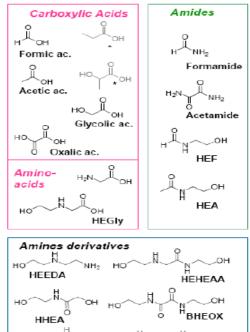


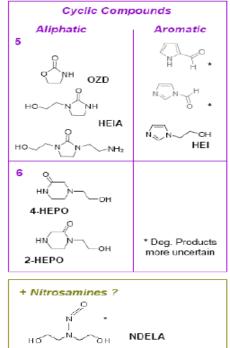
Process Description


Chemical reactions involved with MEA in aqueous solvent

- But MEA could be degraded by different mechanisms
 - Oxidative degradation
 - Initiation
 - O₂ drive radical formation
 - Fe/Cu/Mn catalyze reactions (due to corrosion of metals)
 - ·OH / ·OOH abstract H → MEA radical
 - Propagation
 - MEA radicals + $O_2 \rightarrow$ peroxides
 - -CH₂OH/-NH₂ oxidation \rightarrow aldehydes \rightarrow acids




radicals


MEA

- Products & Operational Consequences
 - O Heat Stable Salts (Formate, Acetate, Oxalate, Glycolate, ...)
 - Solvent loss, higher reclaiming, reduced CO₂ capacity, corrosion
 - O Ammonia, Aldehyde, Organic Amides
 - Volatile, emission concerns
 - Cyclic Compounds & Amine derivatives
 - Increase viscosity, foaming, process handling

- Reactions of MEA with flue gas contaminants (SO_x)
 - 2 main reactions are identified
 - ► SO_4^{2-} formation (condensed version) : $SO_2 + \frac{1}{2}O_2 + 3 H_2O \square$ $SO_4^{2-} + 2 H_3O^+$

Less O₂ available for oxidative degradation

Acidification

HSS

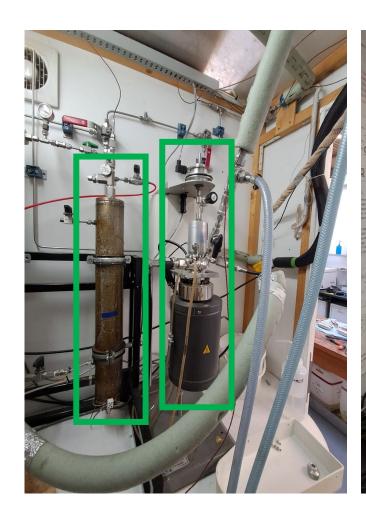
Heat Stable Salt formation :

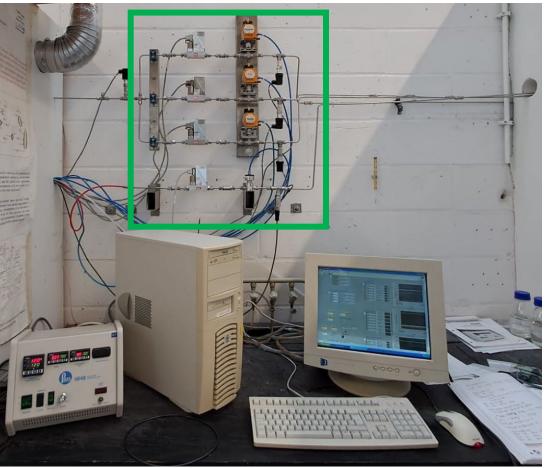
$$SO_4^{2-} + 2 MEA^+$$

2 MEA unusable but not degraded in amine derivative

Degradation Test Rig

- Degradation Tests in presence of SO₂
 - MEA 30 wt.-% solvent prepared in lab and loaded with CO₂ until ~0.5 mol CO₂/mol MEA
 - Accelerated degradation conditions (120°C, 4 barg, agitation speed of 700 rpm)
 - Semi-batch system (inlet/outlet gas & solvent in the reactor)
 - Stainless-Steel Reactor
 - PTFE liner available
 - O Base case validated during PhD Thesis of Prof. G. Léonard¹

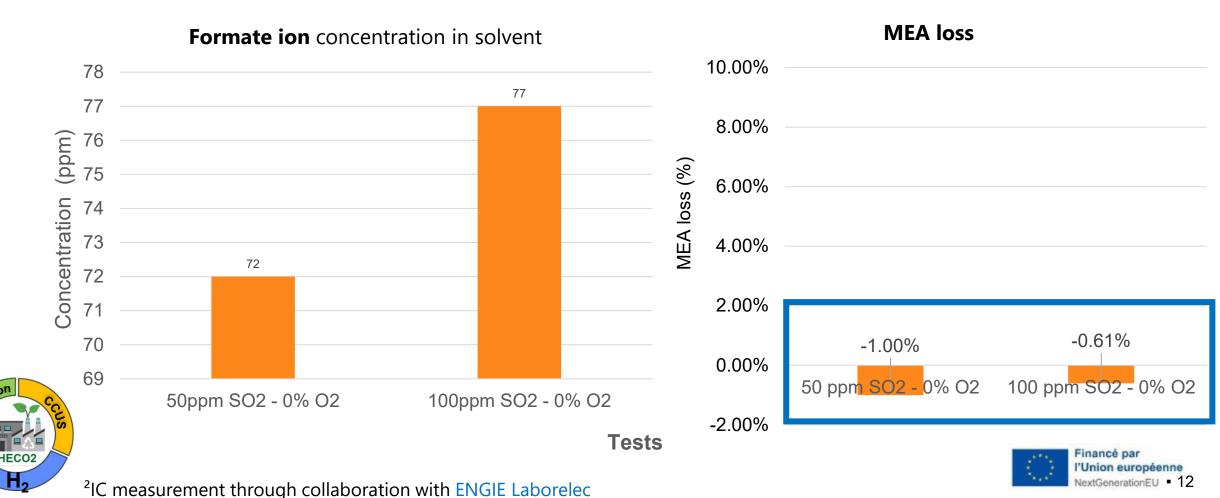


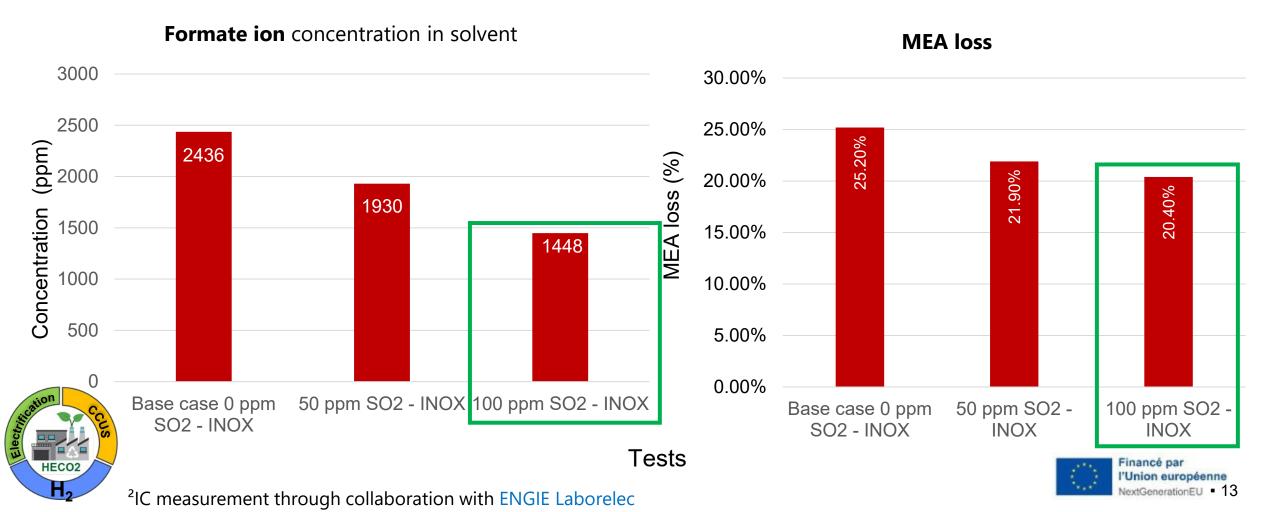

Ternary mixture $O_2 - CO_2 - N_2$ with **15% CO_2 - 5% O_2**

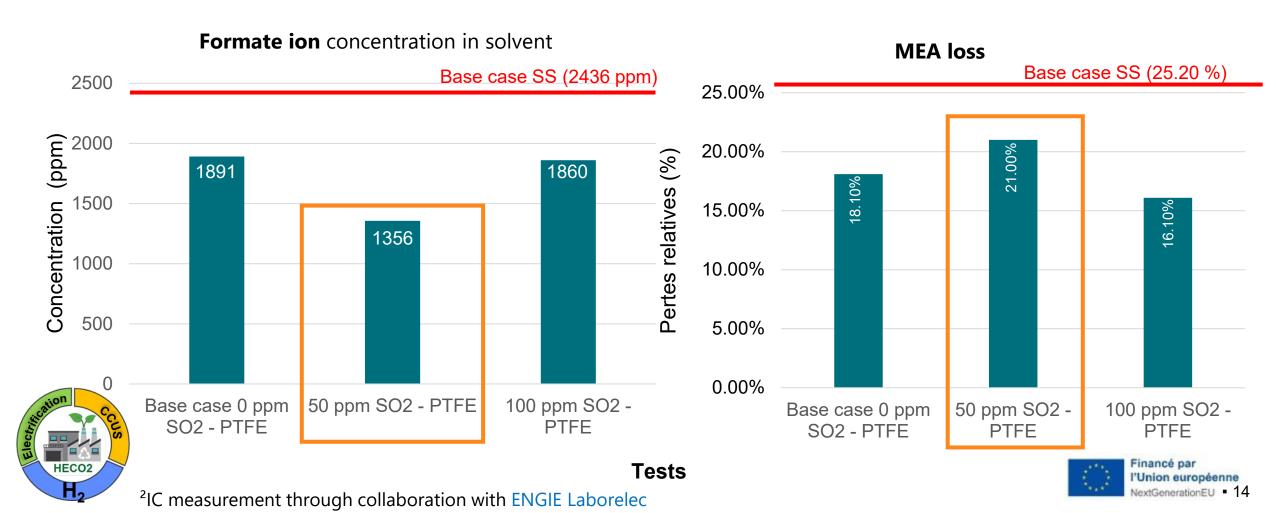
Degradation Test Rig

Degradation Test Rig

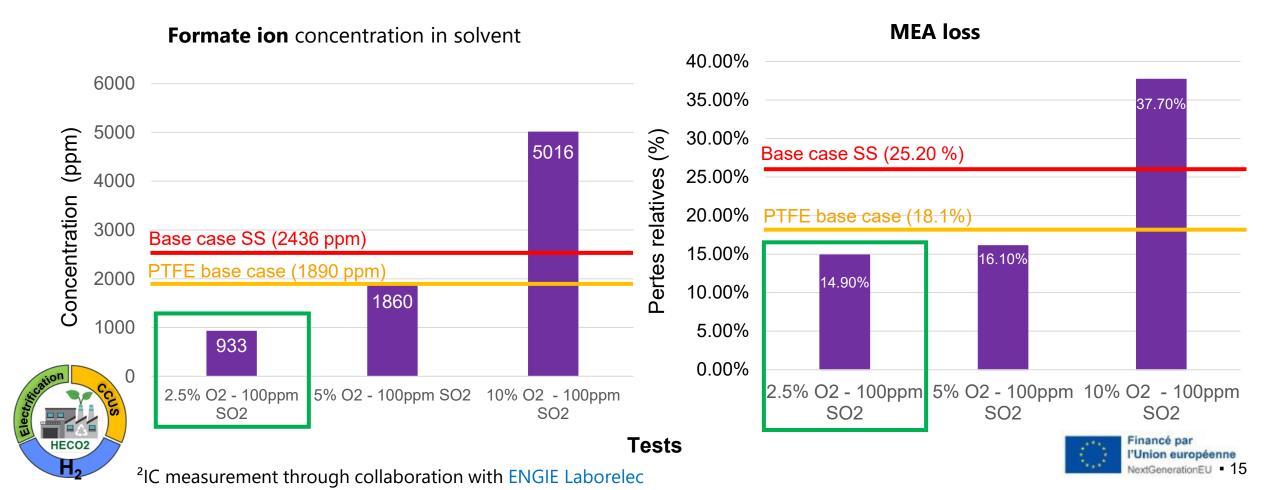
PEPS
CHEMICAL
ENGINEERING


- ► Tests with quaternary mixture $SO_2 N_2 O_2 CO_2$
 - 4 kinds of tests with 3 approaches (for now)
 - 50 and 100 ppm SO₂ in the Stainless-Steel reactor without O₂
 - Check the non MEA degradation
 - 50 and 100 ppm SO₂ in the Stainless-Steel reactor with 5% O₂
 - Corrosion and influence of SO₂ on oxidative degradation
 - 50 and 100 ppm SO₂ in the PTFE reactor with 5% O₂
 - ▶ Isolation of SO₂ reactions & oxidative degradation competition
 - 100 ppm SO₂ in the PTFE reactor with 2,5 and 10% O₂
 - Impacts of O₂ in the presence of SO₂


- ► IC² & HPLC analysis for the **Stainless-Steel** reactor without O₂
 - $O \% O_2 15 \% CO_2 50/100 \text{ ppm SO2}$


► IC² & HPLC analysis for the **Stainless-Steel** reactor with O₂

 \circ 5 % \circ O₂ – 15 % \circ CO₂ – 0/50/100 ppm SO2



► IC² & HPLC analysis for the PTFE reactor with O_2 ○ 5 % O_2 – 15 % CO_2 – 0/50/100 ppm SO2

- ► IC² & HPLC analysis for the **PTFE** reactor with O₂
 - 2.5 10 % O₂ 15 % CO₂ 100 ppm SO2

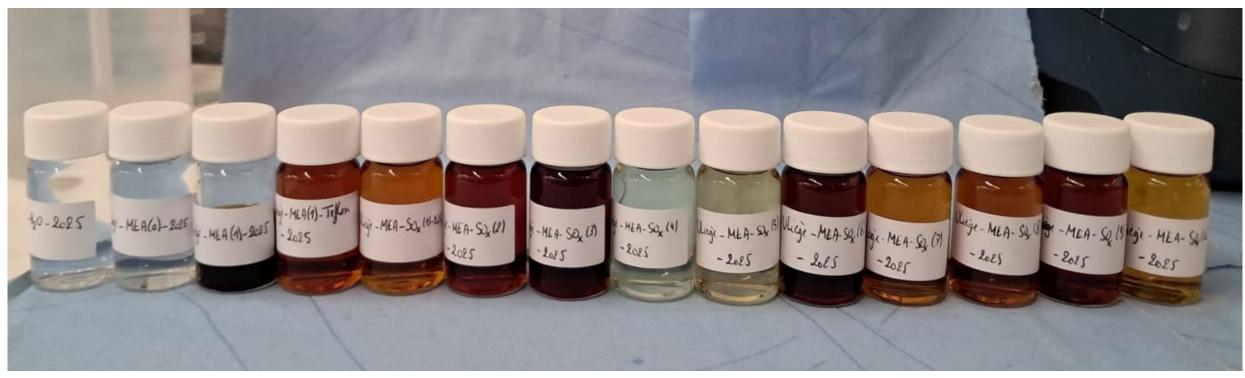
Conclusion

- ► SO₂ degradation tests
 - The PTFE reactor leads to reduced MEA losses and lower formation of degradation ions (HCOO⁻) compared to the Stainless-Steel reactor.
 - O SO₂ appears to exert a protective effect against MEA degradation and the formation of HCOO⁻ ions, apart from one test at 50 ppm, which should be repeated.
 - Increasing the O₂ concentration in the gas phase clearly promotes higher levels of degradation.

Further Work

- Other analysis
 - O ICP-OES for Fe, Cu, Mn, Ni → corrosion and catalyst impact
 - Sulfate measurement & analysis → HSS formation
 - \bigcirc GC-FID for special degradation compounds \rightarrow comparison with ternary mixture system
- Tests with higher [SO₂]
 - \bigcirc 200 ppm in both reactor \rightarrow 3 different points for each case (protective effect vs corrosion)
 - O Varying SO₂ concentration with 2.5 and 10 % O₂
- Modelling work with inclusion of SO_2 reactions in a validated CO_2 capture model including oxidative and thermal degradation
- ► Test of other solvent (e.g., CESAR1) → SolveMORE project

Thank you for your attention!


Loris Baggio Grégoire Léonard

Contact: Loris Baggio

Email: loris.baggio@uliege.be

Illustration of degraded samples

- Reactions of MEA with flue gas contaminants (SO_x)
 - 2 main reactions are identified
 - ► SO_4^{2-} formation (condensed version) : $SO_2 + \frac{1}{2}O_2 + 3 H_2O \square$ $SO_4^{2-} + 2 H_3O^+$

Less O₂ available for oxidative degradation

Acidification

► More complete version :

$$SO_{2(g)} \longrightarrow SO_{2(aq)}$$

$$SO_{2(aq)} + H_2O_{(aq)} \longrightarrow H_2SO_{3(aq)}$$

$$H_2SO_3 \longrightarrow H^+_{(aq)} + HSO_3^-_{(aq)}$$

$$HSO_3^-(aq) \longrightarrow H^+(aq) + SO_3^{2-}(aq)$$

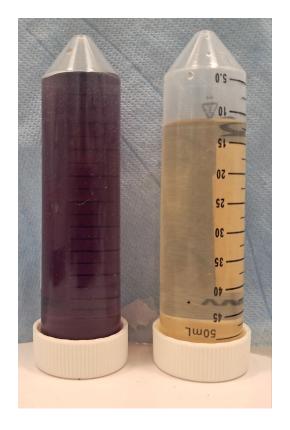
$$2SO_3^{2-}(aq) + O_2(g) \longrightarrow 2SO_4^{2-}(aq)$$

- Thermal degradation studies (G. Léonard 2009-2013)
 - Batch degradation reactors
 - ▶ 3 weeks at 140 °C of loaded MEA 30 wt.-% solvent
 - Influence of temperature and CO₂ has been quantified
 - Influence of oxidative degradation inhibitors on MEA thermal degradation with CO₂
 - \bigcirc Almost no degradation could be observed in the absence of CO_2 .
 - \bigcirc In the presence of CO_2
 - Small degradation of MEA observed at 120°C
 - Significant MEA degradation is observed at 140°C.
 - HEIA is the main thermal degradation product of MEA.
 - Dissolved metals (Fe, Cr, Ni, Mn) do not influence the thermal degradation of MEA with CO₂, independently of the presence of CO₂

Thermal Degradation Tests

- MEA 30 wt.-% solvent prepared in lab and loaded with CO₂ until ~0.5 mol CO₂/mol MEA
 - Comparison between two methods (G. Léonard¹ & L. Braakhuis²)
 - Tests on 3 weeks with intermediate samples each week (100g of loaded MEA solvent at 140 °C)
 - Cooling down before sampling & putting back in the oven for G. Léonard method
 - ▶ 1 cylindrical vessel for the entire test in the case of G. Léonard
 - Removing 1 cylindrical vessel each week
 - 3 cylindrical vessels for the entire test in the case of L. Braakhuis

¹G. Léonard, 'Optimal design of a CO2 capture unit with assessment of solvent degradation', PhD Thesis, Université de Liège, Liège, 2013. Accessed: Sept. 12, 2023. [Online]. Available: https://orbi.uliege.be/handle/2268/152320


²L. Braakhuis, 'Development of Solvent Degradation Models for Amine- Based CO2 Capture', PhD Thesis, Norwegian University of Science and Technology, Trondheim, 2024. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3118629

Thermal Degradation Tests

O First qualitative result (10th of September 2025) after 3 weeks

3 weeks non-stop at 140 °C

3 weeks with intermediate sampling each week (cooling down to ambient temperature)

Intermediate sampling will affect the presence of CO₂ in the solvent?