

AI-based Imaging Biomarkers for Drug Evaluation Trials

Berend Stoel
Division of Image Processing, Department of Radiology
LEIDEN UNIVERSITY MEDICAL CENTER

COI: Bristol-Myers Squibb and Pfizer contributed to the presented research project on rheumatoid arthritis. BS is consultant for ClinFact, Clario, Medpace, CSL Behring, Talecris, Kamada, BeamTx and Takeda.

Imaging Biomarkers in Drug Evaluation Trials

Imaging biomarker

- Measurable defined characteristic
- Indicator of processes or responses to an intervention
- Numerical or categorical outcome measure
- Based on in-vivo medical imaging

The role of AI in producing imaging biomarkers

Examples in drug evaluation trials

- Lung emphysema secondary to α_1 -antitrypsin deficiency
- Early treatment of patients with arthralgia suspected of developing rheumatoid arthritis

Different Routes to Produce an Imaging Biomarker *Classical* versus Deep Learning

3

Pulmonary emphysema is defined in pathological terms:

Permanently enlarged distal airspaces and destruction of their walls¹

Direct way of measuring emphysema: quantification of tissue density

X-ray absorption ≡ physical density

Only in the lungs: 3D imaging data from Computed Tomography

19-sep-24

Hounsfield Unit (HU) + 1000 ≈ density in gram/liter

From image processing we obtain:

- Lung Volume (V)
- 15th percentile density

Classical Route: Lung CT Densitometry to Quantify Emphysema

6

Lung Densitometry in Drug Evaluation Trials on Emphysema Secondary to α1-Antitrypsin Deficiency

Putting Things into Perspective

Natural progression of AATD emphysema

• Each liter of lung tissue looses 2 gram (HU) per year

Treatment effect of AAT augmentation therapy

• Of each liter of lung tissue 1 gram (HU) is preserved each year

Tolerance levels for CT number accuracy in clinical practice¹:

applications. Vienna: IAEA; Human Health Series No 19; 2012

Quality Control of CT Scanners, More Strictly than Clinical Tolerance Levels

9

Stable:

To correct this, internal recalibration during image analysis

Different Routes to Produce an Imaging Biomarker Classical versus *Deep Learning*

Rheumatoid arthritis (RA) is the most common autoimmune diseases

TREAT EARLIER Trial

Early, preventive treatment in Clinically Suspect Arthralgia (CSA) patients:

High resolution plane

TRA

Placebo (n=117)

Location

Wrist

MCP

Foot

(MTP)

• Single intramuscular glucocorticoid-injection and a one-year course of oral methotrexate (n=119)

	Scans	(11 fat-suppressed + contrast)	
	805	COR	
	805	TRA	
 visually scored 	805	COR	
clinical experts	805	TRA	
	792	COR	

787

- Four time points (BL, 4, 12 and 24 months)
- by the RAMRIS system, by

Inflammatory Lesions in Rheumatoid Arthritis (RA)

According to the RAMRIS system:

• Tenosynovitis

Inflammation of tendon sheaths

- 0 No tenosynovitis
- 1 <1.5mm tenosynovial contrast enhancement
- 2 ≥1.5mm but <3mm tenosynovial contrast enhancement
- 3 ≥3mm tenosynovial contrast enhancement

• Synovitis

Inflammation of synovial joint-space

0	norma
•	

- 1 mild (up to 1/3 of presumed maximum area)
- 2 moderate (up to ²/₃ of presumed maximum area)
- 3 severe (>⅔ of presumed maximum)

Inflammatory Lesions in RA

• Bone marrow edema (BME)

A.k.a. osteitis (bone inflammation)

- 0 no BME1 1 33% of bone with osteitis
- 2 34 66% of bone with osteitis
- 3 67 100% of bone with osteitis

• Erosions

Bone loss, with cortical break

- 0 no erosion
- 1 1 10% of bone volume eroded
- 2 11 20% of bone volume eroded
- 3 21 30% of bone volume eroded
-
- 10 91 100% of bone volume eroded

Can Al Help?

- A. In assessing severity of arthritis?
 - By simulation visual scoring (RAMRIS)

- Training set: 727 clinically suspect arthralgia (CSA); 1247 early onset arthritis; and 174 healthy controls
- Validation set: 127 CSA patients from the TREAT-EARLIER trial

Simulating Visual Scoring – Results

Can Al Help?

- A. In assessing severity of arthritis?
 - By simulation visual scoring (RAMRIS)
- B. Localizing treatment effects?
- C. Predicting treatment response?
- By classifying MRI scans into treatment arm: active or placebo
- The learned features then contain the treatment effects, to be displayed in saliency maps

10-fold cross-validation AUC: 0.80

16

Localizing Possible Treatment Effects: Change Maps

17

Assumptions:

- Predictable changes are coming from the (non-calibrated) MRI scanner
- Unpredictable changes are relevant changes

Classification, Explanation Methods

Focused on change maps of the wrist (since segmentations are available)

- 1. By Input Blocking
 - At a **voxel** level: by square masks at each position in the image

- At anatomical level (tenosynovium, synovium, bones, tendons, vessels, skin, remaining tissue)
- 2. By Class Activation Maps (CAMs)

Interpretation of Blocking Effects

Results: Voxel-based Blocking and CAMs

Anatomical Level Masking

(%)	Synovium	Tenosynovium	Bone	Skin	Vessel	Tendon
Irrelevant	74.05	63.24	77.84	72.97	75.14	80.00
Relevant	6.49	17.30	2.70	7.57	5.41	0.54
Misleading	1.08	1.08	0.00	2.16	0.54	0.00
Not helping	18.38	18.38	19.46	17.30	18.92	19.46

Can Al Help?

- A. In assessing severity of arthritis?
 - By simulation visual scoring (RAMRIS)
- B. Localizing treatment effects?
- C. Predicting treatment response?
 - Facilitate patient selection
 - Prevent overtreatment

Definition of treatment response:

Decrease in visual score of inflammation > 3 points (RAMRIS) ≡ smallest detectable change in visual score, by two observers

Treatment Response Prediction: Two-step Approach

Treatment Response Prediction: Results

65 %

79 %

53 %

86 %

AUC: 72% ± 7.83

Test characteristics (n=27):

- Positive predictive value:
- Negative predictive value:
- Sensitivity:
- Specificity:

Conclusions on the Role of Al

AI can help in

- Assessing severity of arthritis
- Localizing treatment effects
- Predicting treatment response, to facilitate patient selection

Classical imaging biomarker	Deep learning based biomarker			
Easily explainable	Explainable AI: work in progress			
Manual correction possible	Work in progress			
Quality control is relatively simple	Complex			
Imaging biomarkers are interpretable	Interpretation through saliency maps			
Restricted to chosen features	Possibility to discover new features			
Based on prior knowledge	Hypothesis generation			
Both need stringent quality control of image acquisition				

Division of Image Processing:

οίπ

- Yanli Li, MSc
- Tahereh HassanZadeh, PhD
- Jingnan Jia, PhD
- Denis Shamonin, MSc
- Els Bakker, PhD
- Marius Staring, PhD

DutchArthritisSociety ReumaNederland Rheumatology:

- Annette van der Helm-van Mil, MD, PhD
- Dennis Ton, MD

Pulmonology:

• Jan Stolk, MD, PhD

Radiology:

LONG FONDS

- Monique Reijnierse, MD, PhD
- Lucia Kroft, MD, PhD