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The Scalable Future of Healthcare

Research with LLMs

Scalability Challenge: EHR-based research is overwhelmed by ever-growing volumes of free
text data.

Unlocking Insights: Crucial information is buried in these texts, creating barriers to efficiency.

Solution: Large language models (LLMs) automate text analysis, unlocking unprecedented
scalability.

Impactful Use Cases:
Faster and more accurate clinical trial eligibility screening

Retrospective real-world disease incidence and outcome insights

Transformative Potential: LLMs are poised to revolutionize healthcare research
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Quick math

Recent preparations for retrospective study on
breast cancer
Pilot 300 patients

Question: how many follow up documents?

72.000 notes (~ 240 notes per person)

5000 patients = 1.2 million notes

18-20.000 patients (full cohort)

4-5 million notes!




DID YOU LOSE MONEY? CHECK OUR LIST OF 500 MUTUAL FUNDS TO FIND OUT

ENRON

low millions of i innocent Americans
lost their life savmgs

“When dozens of FBI agents
descended on Enron's headquarters,

Lay takes the Fifth e S they carted away hard drives and
Ex-Chief Executive Officer il O VN : | hundreds of boxes of documents. The
bt coniets /T LY 2 | task force had an onerous task:

before Congress
™

making sense and a criminal case out
of approximately ten million
documents. “
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What if..

Context
Complete record of patient X

Query
“Does this patient have heart failure ?”

retrieval

DISCHARGE LETTER 1
* . HEART FAILURE
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DRUG PRESCRIPTION

NURSE VISITE NOTE

Complete record of patient X



prompt
Vector store with complete o

, uery = “does this patient have
record of patient X 4 \O(Ompt *7" | | |
y . u | \\ u ]
. +context =
P
L for pro™

LLM

Retrieval augmentation generation (RAG) - ‘chatting’ with the records
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Enhancing Precision in Detecting Severe Immune-Related
Adverse Events: Comparative Analysis of Large Language
Models and International Classification of Disease Codes in
Patient Records

Virginia H. Sun, MD'2{); Julius C. Heemelaar, MD'#?{%; lbrahim Hadzic, MSc'#5¢ @ ; Vineet K. Raghu, PhD"? () ; Chia-Yun Wu, MD"%;
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ARPLIEE FO DR BT iINGLORBhEX ADERSE-EVENTS OF
IMINOTHERAPY

/ Prompt \
Question:

...Based on the medical reports provided in the
context, is the patient suspected to have immune
checkpoint inhibitor induced myocarditis this hospital

/\ admission?...
Context:

Open-source large language models are an
accessible and generalizable tool that can
retrospectively detect immune-related adverse

v Document 1: “Troponins have been elevated stably

at 60's (was 7 at baseline)... TTE was notable for
new LA dilation since 2017...”

Document 2: “...61yo M with metastatic melanoma
(CNS disease) s/p 3 cycles Ipi/Nivo... admitted from
clinic with concern for ICl myocarditis/myositis...”
Document 3: “He reports increased fatigue over the

@few weeks but denies any chest pain or SOEy

Vector Database
Patient medical
records

A

Relevant context
B

e

events among patients on immune checkpoint
inhibitor therapy, outperforming ICD codes in
accuracy and manual adjudication in efficiency.

94.2 925 9.42

Sensitivity Specificity sec/chart

compared to 71.8% compared to 911% versus ~15 min with
with ICD-codes with ICD-codes manual chart review
OF;

Copies of this slide deck obtained through Quick Response (QR) &
Code are for personal use only and may not be reproduced

without permission from ASCO® and the author of these slides @3 Eirkk

Results Admissions
L. n=7555 L
Derivation Cohort Validation Cohort
n=5677 n=1878
Confirmed irAEs
Colitis
Hepatitis 2
e Pneumonitis
“Endocrinopathy, Nauropathy,
Myocarditis, atc
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Discrepancies
1 false negative

0.02% of LLM responses
- Diagnosed with ICI-colitis
post-discharge

379 false positives
6.7% of LLM responses 54.4%
B Confirmed irAE, missed
by manual adjudication
[l History of pre-admit irAE
W LLM misdiagnosis
Suspected irAE




In preprint
Matching Patients to Clinical Trials with

Large Language Models

Qiao Jin, M.D.", Zifeng Wang, M.S.2, Charalampos S. Floudas, M.D., D.MSc., M.S.3, N at | 0 n al I n StItUteS

Fangyuan Chen, B.S., Changlin Gong, M.D.5, Dara Bracken-Clarke, M.D.?, Elisabetta f H Ith

Xue, M.D.}, Yifan Yang, B.S."%, Jimeng Sun, Ph.D.%, Zhiyong Lu, Ph.D."

“criterion-level B B
1. A 32 yo woman who presents following a severe 'exploding' headache.

accuracyof 87.3%’ 2. She and her hl::lsband report that yesterda}: she WE‘IS .l:.n the kitchen and steod up and ll1.it her head on the corner Df_a JI:all:rinet.
3. The next morning she developed a sudden 'exploding' headache. She came to the hospital where head CT showed a significant

dose to theemrt amount of blood in her right ventricle.

4, NSGY evaluated her for spontanecus intraventricular hemorrhage with a concern for an underlying wvascular malformation ...

o, o, )ll
(88.7%-90.0% Clinical trial candidate | @ , PredictioninJSON | b , c
Inclusion criteria: TrialGPT { TrialGPT Applications
” o A. Included patients will Aﬂﬂﬂtﬂ“ﬂl‘l "inclusion": { ... A ation
reduced screening be adults who meet .. "D. Headache ...": ggreg Ranking
° o/ 1 B. Traumatic injury to (Patient, criterion) ["The headache is (Patient
t,me by42'6 /O the head has occurred ' caused by AVM.", P i'ct:i.n:ﬂ § E /&ﬁ‘ ﬁ
C. Headache has developed 5 Jv [4, 5, 6], 5 @
within 7 days ... "not included"]} l 1 ) 3 4
D. Headache is not better "execlusion": { ...
. . accounted for by "A. Patients will
LLM S Ca n a | d | n another diagnosis ... > be excluded ...": > Excluding
["The trauma has
|. . | . | Exclusion criteria: l only elapsed one § E /&g
C Inlca trla A, Patients will be » Criterion-level day.", ,L o] =
. excluded if more than Explanation [, 2, 31, Trial-level )4 x
Screen | n ten days have elapsed Relevant sentences "not excluded"]} Relevance score
g aince .. Eligibility ) Eligibility score -




PERSPECTIVE

A Call for Artificial Intelligence Implementation
@EIM Science Centers to Evaluate Clinical Effectiveness

AI Christopher A. Longhurst ®, M.D., M.S.,! Karandeep Singh ®, M.D., M.M.Sc.,' Aneesh Chopra ®, M.P.P.,’
Ashish Atreja ®, M.D., M.P.H.,” and John S. Brownstein ®, Ph.D.*”

Received: March 1, 2024; Revised: May 7, 2024; Accepted: May 16, 2024; Published: July 10, 2024

Key Challenge in Al Implementation in Healthcare:

Surplus of Al Models, Minimal Practical Impact:
While there is a large number of Al models available, their implementation in healthcare has

been marginal, with little to no effect on patient-centered outcomes

Relevant to the Netherlands in the LLM space
It remains unclear how well large language models perform within
Dutch healthcare settings, particularly when dealing with medical

jargon.

Longhurst et al. A Call for Artificial Intelligence Implementation Science
Centers to Evaluate Clinical Effectiveness. NEJM Al (2024)



Get involved with LUMC-NLP-LAB!

LUMC-NLP-LAB is open for collaborations!

Implement NLP methods, including large language
models, in Dutch healthcare.

Develop and validate LLM applications for medical
research and clinical innovation.

Collaboration within departments and with external
partners.

Emphasize implementation science and education
in all initiatives.

Julius Heemelaar Marieke van Buchem
Cardioloog i.o. en postdoc Innovatiemanager @
onderzoeker @ LUMC CAIRElab
j.c.heemelaar@lumc.nl m.m.van_buchem@lumc.nl

X: @CardioOnco_JHE
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